
django-ca Documentation
Release 1.2.0

Mathias Ertl

July 09, 2016

Contents

1 Installation 3

2 Update 7

3 Custom settings 9

4 Command-line interface 13

5 Web interface 15

6 Certificate authority management 17

7 Host a Certificate Revokation List (CRL) 19

8 Run a OCSP responder 21

9 x509 extensions in other CAs 23

10 ChangeLog 33

11 Development 37

12 Indices and tables 39

i

ii

django-ca Documentation, Release 1.2.0

django-ca is a small project to manage TLS certificate authorities and easily issue and revoke certificates. It is based
on pyOpenSSL and Django. It can be used as an app in an existing Django project or stand-alone with the basic
project included. Certificates can be managed through Djangos admin interface or via manage.py commands - so no
webserver is needed, if you’re happy with the command-line.

Features:

• Create certificate authorities, issue and revoke certificates in minutes.

• Receive e-mail notifications of certificates about to expire.

• Certificate validation via the included OCSP responder and Certificate Revocation Lists (CRLs).

• Complete, consistent and powerful command line interface.

• Optional web interface for certificate handling (e.g. issuing, revoking, ...).

• Written in pure Python2.7/Python3.4+, using Django 1.8 or later.

Contents:

Contents 1

https://pyopenssl.readthedocs.org/
https://www.djangoproject.com/

django-ca Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Installation

You can run django-ca as a regular app in any existing Django project of yours, but if you don’t have any Django
project running, you can run it as a standalone project.

1.1 Requirements

• Python 2.7 or Python 3.4+

• Django 1.8+

• Any database supported by Django (sqlite3/MySQL/PostgreSQL/...)

• Python, OpenSSL and libffi development headers

1.2 As Django app (in your existing Django project)

This chapter assumes that you have an already running Django project and know how to use it.

You need various development headers for pyOpenSSL, on Debian/Ubuntu systems, simply install these packages:

$ apt-get install gcc python3-dev libffi-dev libssl-dev

You can install django-ca simply via pip:

$ pip install django-ca

and add it to your INSTALLED_APPS:

INSTALLED_APPS = [
... your other apps...

'django_ca',
]

... and configure the other available settings to your liking, then simply run:

$ python manage.py migrate
$ python manage.py collectstatic

FINALLY, create the root certificates for your CA:
(replace parameters after init_ca with your local details)

3

django-ca Documentation, Release 1.2.0

$ python manage.py init_ca RootCA \
> /C=AT/ST=Vienna/L=Vienna/O=Org/OU=OrgUnit/CN=ca.example.com

After that, django-ca should show up in your admin interface (see Web interface) and provide various manage.py
commands (see Command-line interface).

1.3 As standalone project

You can also install django-ca as a stand-alone project, if you install it via git. The project provides a command-line
interface that provides complete functionality. The web interface is optional.

Note: If you don’t want the private keys of your CAs on the same machine as the web interface, you can also host the
web interface on a second server that accesses the same database (CA private keys are hosted on the filesystem, not in
the database). You obviously will not be able to sign certificates using the web interface, but you can still e.g. revoke
certificates or run a OCSP responder.

In the following code-snippet, you’ll do all necessary steps to get a basic setup:

install dependencies (adapt to your distro):
$ apt-get install gcc git python3-dev libffi-dev libssl-dev virtualenv

clone git repository:
$ git clone https://github.com/mathiasertl/django-ca.git

create virtualenv:
$ cd django-ca
$ virtualenv -p /usr/bin/python3 .
$ source bin/activate

install Python dependencies:
$ pip install -U pip setuptools
$ pip install -r requirements.txt

In the above script, you have created a virtualenv, meaning that all libraries you install with pip install are
installed in the virtualenv (and don’t pollute your system). It also means that before you execute any manage.py
commands, you’ll have to activate your virtualenv, by doing, in the directory of the git checkout:

$ source bin/activate

1.3.1 Configure django-ca

Before you continue, you have to configure django-ca. Django uses a file called settings.py, but so you don’t
have to change any files managed by git, it includes localsettings.py in the same directory. So copy the
example file and edit it with your favourite editor:

$ cp ca/ca/localsettings.py.example ca/ca/localsettings.py

The most important settings are documented there, but you can of course use any setting provided by Django.

Warning: The SECRET_KEY and DATABASES settings are absolutely mandatory. If you use the Web interface,
the STATIC_ROOT setting is also mandatory.

4 Chapter 1. Installation

http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://docs.djangoproject.com/en/dev/topics/settings/

django-ca Documentation, Release 1.2.0

1.3.2 Initialize the project

After you have configured django-ca, you need to initialize the project by running a few manage.py commands:

$ python ca/manage.py migrate

If you intend to run the webinterface (requires STATIC_ROOT setting!)
$ python ca/manage.py collectstatic

FINALLY, create a certificate authority:
(replace parameters after init_ca with your local details)
$ python manage.py init_ca /C=AT/ST=Vienna/L=Vienna/O=Org/CN=ca.example.com

Please also see Certificate authority management for further information on how to create certificate authorities. You
can also run init_ca with the -h parameter for available arguments.

1.3.3 Create manage.py shortcut

If you don’t want to always chdir to the git checkout, activate the virtualenv and only then run manage.py, you
might want to create a shortcut shell script somewhere in your PATH (e.g. /usr/local/bin):

#!/bin/bash

BASEDIR is the location of your git checkout
BASEDIR=/usr/local/share/ca
PYTHON=${BASEDIR}/bin/python
MANAGE=${BASEDIR}/ca/manage.py

${PYTHON} ${MANAGE} "$@"

1.3.4 Setup a webserver

Setting up a webserver and all that comes with it is really out of scope of this document. The WSGI file is located in
ca/ca/wsgi.py. Django itself provides some info for using Apache and mod_wsgi, or you could use uWSGI and
nginx, or any of the many other options available.

1.4 Regular cronjobs

Some manage.py commands are intended to be run as cronjobs:

assuming you cloned the repo at /root/:
HOME=/root/django-ca
PATH=/root/django-ca/bin

m h dom mon dow user command

notify watchers about certificates about to expire

* 8 * * * root python ca/manage.py notify_expiring_certs

recreate the CRL and the OCSP index
12 * * * * root python ca/manage.py dump_crl
14 * * * * root python ca/manage.py dump_ocsp_index

1.4. Regular cronjobs 5

http://uwsgi-docs.readthedocs.org/en/latest/tutorials/Django_and_nginx.html
http://uwsgi-docs.readthedocs.org/en/latest/tutorials/Django_and_nginx.html

django-ca Documentation, Release 1.2.0

6 Chapter 1. Installation

CHAPTER 2

Update

Since 1.0.0, this project updates like any other project. First, update the source code, if you use git:

git pull origin master

or if you installed django-ca via pip:

pip install -U django-ca

then upgrade with these commands:

pip install -U -r requirements.txt
python ca/manage.py migrate

if you use the webinterface
python ca/manage.py collectstatic

Warning: If you installed django-ca in a virtualenv, don’t forget to activate it before executing any python or pip
commands using:

source bin/activate

2.1 Update from 1.0.0b2

If you’re updating from a version earlier then 1.0.0 (which was the first real release), you have to first update to
1.0.0.b1 (see below), then to 1.0.0.b2, apply all migrations and reset existing migrations Since all installed instances
were probably private, it made sense to start with a clean state.

To update from an earlier git-checkout, to:

• Upgrade to version 1.0.0b2

• Apply all migrations.

• Upgrade to version 1.0.0

• Remove old migrations from the database:

python manage.py dbshell
> DELETE FROM django_migrations WHERE app='django_ca';

7

django-ca Documentation, Release 1.2.0

• Fake the first migration:

python manage.py migrate django_ca 0001 –fake

2.2 Update from pre 1.0.0b1

Prior to 1.0.0, this app was not intended to be reusable and so had a generic name. The app was renamed to django_ca,
so it can be used in other Django projects (or hopefully stand-alone, someday). Essentially, the upgrade path should
work something like this:

backup old data:
python manage.py dumpdata certificate --indent=4 > certs.json

update source code
git pull origin master

create initial models in the new app, but only the initial version!
python manage.py migrate django_ca 0001

update JSON with new model name
sed 's/"certificate.certificate"/"django_ca.certificate"/' > certs-updated.json

load data
python manage.py loaddata certs-updated.json

apply any other migrations
python manage.py migrate

8 Chapter 2. Update

CHAPTER 3

Custom settings

You can use any of the settings understood by Django and django-ca provides some of its own settings.

From Djangos settings, you especially need to configure DATABASES, SECRET_KEY, ALLOWED_HOSTS and
STATIC_ROOT.

All settings used by django-ca start with the CA_ prefix. Settings are also documented at
ca/ca/localsettings.py.example (view on git).

CA_DEFAULT_EXPIRES Default: 730

The default time, in days, that any signed certificate expires.

CA_DEFAULT_PROFILE Default: webserver

The default profile to use.

CA_DEFAULT_SUBJECT Default: {}

The default subject to use. The keys of this dictionary are the valid fields in X509 certificate subjects. Example:

CA_DEFAULT_SUBJECT = {
'C': 'AT',
'ST': 'Vienna',
'L': 'Vienna',
'O': 'HTU Wien',
'OU': 'Fachschaft Informatik',
'emailAddress': 'user@example.com',

}

CA_DIGEST_ALGORITHM Default: "sha512"

The default digest algorithm used to sign certificates. You may want to use "sha256" for older (pre-2010)
clients. Note that this setting is also used by the init_ca command, so if you have any clients that do not
understand sha512 hashes, you should change this beforehand.

CA_DIR Default: "ca/files"

Where the root certificate is stored. The default is a files directory in the same location as your manage.py
file.

CA_NOTIFICATION_DAYS Default: [14, 7, 3, 1,]

Days before expiry that certificate watchers will receive notifications. By default, watchers will receive notifi-
cations 14, seven, three and one days before expiry.

CA_OCSP_URLS Default: {}

Configuration for OCSP responders. See Run a OCSP responder for more information.

9

https://docs.djangoproject.com/en/dev/ref/settings/
https://github.com/mathiasertl/django-ca/blob/master/ca/ca/localsettings.py.example

django-ca Documentation, Release 1.2.0

CA_PROFILES Default: {}

Profiles determine the default values for the keyUsage, extendedKeyUsage x509 extensions. In short,
they determine how your certificate can be used, be it for server and/or client authentication, e-mail signing or
anything else. By default, django-ca provides these profiles:

Profile keyUsage extendedKeyUsage
client digitalSignature clientAuth
server digitalSignature, keyAgreement keyEncipherment clientAuth, serverAuth
web-
server

digitalSignature, keyAgreement keyEncipherment serverAuth

enduser dataEncipherment, digitalSignature,
keyEncipherment

clientAuth, emailProtection,
codeSigning

ocsp nonRepudiation, talSignature, keyEncipherment OCSPSigning

Further more,

• The keyUsage attribute is marked as critical.

• The extendedKeyUsage attribute is marked as non-critical.

This should be fine for most usecases. But you can use the CA_PROFILES setting to either update or disable
existing profiles or add new profiles that you like. For that, set CA_PROFILES to a dictionary with the keys
defining the profile name and the value being either:

• None to disable an existing profile.

• A dictionary defining the profile. If the name of the profile is an existing profile, the dictionary is updated,
so you can ommit a value to leave it as the default. The possible keys are:

key Description
"keyUsage" The keyUsage X509 extension.
"extendedKeyUsage"The extendedKeyUsage X509 extension.
"desc" A human-readable description, shows up with “sing_cert -h” and in the

webinterface profile selection.
"subject" The default subject to use. If ommited, CA_DEFAULT_SUBJECT is used.
"cn_in_san" If to include the CommonName in the subjectAltName by default. The default

value is True.

Here is a full example:

CA_DEFAULT_PROFILES = {
'client': {

'desc': _('Nice description.'),
'keyUsage': {

'critical': True,
'value': [

'digitalSignature',
],

},
'extendedKeyUsage': {

'critical': False,
'value': [

'clientAuth',
],

},
'subject': {

'C': 'AT',
'L': 'Vienna',

}

10 Chapter 3. Custom settings

django-ca Documentation, Release 1.2.0

},

We really don't like the "ocsp" profile, so we remove it.
'ocsp': None,

}

CA_PROVIDE_GENERIC_CRL Default: True

If set to False, django_ca.urls will not add a CRL view. See Use generic view to host a CRL for more
information.

This setting only has effect if you use django_ca as a full project or you include the django_ca.urlsmodule
somewhere in your URL configuration.

11

django-ca Documentation, Release 1.2.0

12 Chapter 3. Custom settings

CHAPTER 4

Command-line interface

django-ca provides a complete command-line interface for all functionality. It is implemented as subcommands
of Djangos manage.py script. You can use it for all certificate management operations, and Certificate authority
management is only possible via the command-line interface for security reasons.

In general, run manage.py without any parameters for available subcommands:

$ python manage.py

...
[django_ca]

cert_watchers
dump_cert
dump_crl
...

Warning: Remember to use the virtualenv if you installed django-ca in one.

Execute manage.py <subcommand> -h to get help on the subcommand.

manage.py subcommands for certificate authority management:

Command Description
dump_ca Write the CA certificate to a file.
edit_ca Edit an existing certificate authority.
init_ca Create a new certificate authority.
list_cas List currently configured certificate authorities.
view_ca View details of a certificate authority.

manage.py subcommands for certificate management:

Command Description
cert_watchers Add/remove addresses to be notified of an expiring certificate.
dump_cert Dump a certificate to a file.
list_certs List all certificates.
notify_expiring_certs Send notifications about expiring certificates to watchers.
revoke_cert Revoke a certificate.
sign_cert Sign a certificate.
view_cert View a certificate.

Miscellaneous manage.py subcommands:

13

django-ca Documentation, Release 1.2.0

Command Description
dump_crl Write the certificate revocation list (CRL), see Host a Certificate Revokation List (CRL).
dump_ocsp_index Write an OCSP index file, see Run a OCSP responder.

14 Chapter 4. Command-line interface

CHAPTER 5

Web interface

The web interface allows you to perform the most common tasks necessary when running certificate authority. It is
implemented using Djangos admin interface. You can:

• Issue and revoke certificates.

• Modify the x509 extensions used when signing certificates.

• Modify who is notified about expiring certificates.

The django project in the git repository (e.g. if you installed django-ca as a standalone project) already enables the
admin interface and it’s usable as soon as you enabled the webserver (tip: Create a user for login using manage.py
createsuperuser). If you installed django-ca as an app, the admin interface is automatically included.

15

django-ca Documentation, Release 1.2.0

16 Chapter 5. Web interface

CHAPTER 6

Certificate authority management

django-ca supports managing multiple certificate authorities as well as child certificate authorities.

The only way to create certificate authorities is via the command-line interface. It is obviously most important that
the private keys of the certificate authorities are never exposed to any attacker, and any web interface would pose an
unnecessary risk.

For the same reason, the private key of a certificate authority is stored on the filesystem and not in the database. The
initial location of the private key is configured by the CA_DIR setting. This also means that you can run your django-
ca on two hosts, where one host has the private key and only uses the command line, and one with the webinterface
that can still be used to revoke certificates.

To manage certificate authorities, use the following manage.py commands:

Command Description
init_ca Create a new certificate authority.
list_cas List all currently configured certificate authorities.
edit_ca Edit a certificate authority.
view_ca View details of a certificate authority.
dump_ca Write the CA certificate to a file.

Various details of the certificate authority, mostly the x509 extensions used when signing a certificate, can also be
managed via the webinterface.

Here is a shell session that illustrates the respective manage.py commands:

$ python manage.py init_ca --pathlen=2
> --crl-url=http://ca.example.com/crl \
> --ocsp-url=http://ocsp.ca.example.com \
> --issuer-url=http://ca.example.com/ca.crt \
> TestCA /C=AT/L=Vienna/L=Vienna/O=Example/OU=ExampleUnit/CN=ca.example.com
$ python manage.py list_cas
BD:5B:AB:5B:A2:1C:49:0D:9A:B2:AA:BC:68:ED:ED:7D - TestCA

$ python manage.py view_ca BD:5B:AB:5B:A2
...

* OCSP URL: http://ocsp.ca.example.com
$ python manage.py edit_ca --ocsp-url=http://new-ocsp.ca.example.com \
> BD:5B:AB:5B:A2
$ python manage.py view_ca BD:5B:AB:5B:A2
...

* OCSP URL: http://new-ocsp.ca.example.com

Note that you can just use the start of a serial to identify the CA, as long as that still uniquely identifies the CA.

17

django-ca Documentation, Release 1.2.0

6.1 Create intermediate CAs

Intermediate CAs are created, just like normal CAs, using manage.py init_ca. For intermediate CAs to be valid,
CAs however must have a correct pathlen x509 extension. Its value is an integer describing how many levels of
intermediate CAs a CA may have. A pathlen of “0” means that a CA cannot have any intermediate CAs, if it is not
present, a CA may have an infinite number of intermediate CAs.

Note: django-ca by default sets a pathlen of “0”, as it aims to be secure by default. The pathlen attribute cannot
be changed in hindsight (not without resigning the CA). If you plan to create intermediate CAs, you have to consider
this when creating the root CA.

So for example, if you want two levels of intermediate CAs, , you’d need the following pathlen values (the
pathlen value is the minimum value, it could always be a larger number):

index CA pathlen description
1 example.com 2 Your root CA.
2 sub1.example.com 1 Your first intermediate CA, a sub-CA from (1).
3 sub2.example.com 0 A second intermediate CA, also a sub-CA from (1).
4 sub.sub1.example.com 0 An intermediate CA of (2).

If in the above example, CA (1) had pathlen of “1” or CA (2) had a pathlen of “0”, CA (4) would no longer be
a valid CA.

By default, django-ca sets a pathlen of 0, so CAs will not be able to have any intermediate CAs. You can configure
the value by passing --pathlen to init_ca:

$ python manage.py init_ca --pathlen=2 ...

When creating a sub-ca, you must name its parent using the --parent parameter:

$ python manage.py list_cas
BD:5B:AB:5B:A2:1C:49:0D:9A:B2:AA:BC:68:ED:ED:7D - Root CA
$ python manage.py init_ca --parent=BD:5B:AB:5B ...

Note: Just like throughout the system, you can always just give the start of the serial, as long as it still is a unique
identifier for the CA.

18 Chapter 6. Certificate authority management

CHAPTER 7

Host a Certificate Revokation List (CRL)

A Certificate Revokation List (CRL) contains all revoked certificates signed by a certificate authority. Having a CRL
is completely optional (e.g. Let’s Encrypt certificates don’t have one).

A URL to the CRL is usually included in the certificates (in the crlDistributionPoints x509 extension) so
clients can fetch the CRL and verify that the certificate has not been revoked. Some services (e.g. OpenVPN) also just
keep a local copy of a CRL.

Note: CRLs are usually hosted via HTTP, not HTTPS. CRLs are always signed, so hosting them via HTTP is not a
security vulnerability. On the other hand, you cannot verify the the certificate used when fetching the CRL anyway,
since you would need the CRL for that.

7.1 Add CRL URL to new certificates

To include the URL to a CRL in newly issued certificates (you cannot add it to already issued certificates, obviously),
either set it in the admin interface or via the command line:

$ python manage.py list_cas
34:D6:02:B5:B8:27:4F:51:9A:16:0C:B8:56:B7:79:3F - Root CA
$ python manage.py edit_ca --crl-url=http://ca.example.com/crl.pem \
> 34:D6:02:B5:B8:27:4F:51:9A:16:0C:B8:56:B7:79:3F

7.2 Use generic view to host a CRL

django-ca provides the generic view CertificateRevocationListView to provide CRLs via HTTP.

If you installed django-ca as a full project, a default CRL is already available for all CAs. If you installed django-ca
on “ca.example.com”, the CRL is available at http://ca.example.com/django_ca/crl/<serial>/. If
you installed django-ca as an app, you only need to include django_ca.urls in your URL conf at the appropriate
location.

The default CRL is in the ASN1/DER format, signed with sha512 and refreshed every ten minutes. This is fine for
TLS clients that use CRLs and is in fact similar to what public CAs use (see crlDistributionPoints). If you want to
change any of these settings, you can override them as parameters in a URL conf:

from OpenSSL import crypto
from django_ca.views import CertificateRevocationListView

19

https://letsencrypt.org/

django-ca Documentation, Release 1.2.0

urlpatterns = [
... your other patterns

We need a CRL in PEM format with a sha256 digest
url(r'^crl/(?P<serial>[0-9A-F:]+)/$',

CertificateRevocationListView.as_view(
type=crypto.FILETYPE_PEM,
digest='sha256',
content_type='text/plain',

),
name='sha256-crl')),

]

If you do not want to include the automatically hosted CRL, please set CA_PROVIDE_GENERIC_CRL to False in
your settings.

class django_ca.views.CertificateRevocationListView(**kwargs)
Generic view that provides Certificate Revocation Lists (CRLs).

content_type = ‘application/pkix-crl’
The value of the Content-Type header used in the response. For CRLs in PEM format, use
"text/plain".

digest = ‘sha512’
Digest used for generating the CRL.

expires = 600
CRL expires in this many seconds.

type = 2
Filetype for CRL, one of the OpenSSL.crypto.FILETYPE_* variables. The default is
OpenSSL.crypto.FILETYPE_ASN1.

7.3 Write a CRL to a file

You can generate the CRL with the manage.py dump_crl command:

$ python manage.py dump_crl -f PEM /var/www/crl.pem

Note: The dump_crl command uses the first enabled CA by default, you can force a particular CA with
--ca=<serial>.

CRLs expire after a certain time (default: one day, configure with --expires=SECS), so you must periodically
regenerate it, e.g. via a cron-job.

How and where to host the file is entirely up to you. If you run a Django project with a webserver already, one
possibility is to dump it to your MEDIA_ROOT directory.

20 Chapter 7. Host a Certificate Revokation List (CRL)

CHAPTER 8

Run a OCSP responder

OCSP, or the Online Certificate Status Protocol provides a second method (besides CRLs) for a client to find out if a
certificate has been revoked.

Warning: The OCSP responder included in django-ca is still very experimental. Expect problems when using it.
Please also expect major changes in how it is configured in future versions.

8.1 Configure OCSP with django-ca

django-ca provides generic HTTP endpoints for an OCSP service for your certificate authorities. The setup involves:

1. Creating a responder certificate

2. Configure generic views

3. Add a OCSP URL to the new certificate

New in version 1.2: Before version 1.2, django-ca was not able to host its own OCSP responder.

8.1.1 Create an OCSP responser certificate

To run an OCSP responder, you first need a certificate with some special properties. Luckily, django-ca has a profile
predefined for you:

$ openssl genrsa -out ocsp.key 4096
$ openssl req -new -key ocsp.key -out ocsp.csr -utf8 -batch
$ python manage.py sign_cert --csr=ocsp.csr --out=ocsp.pem \
> --subject /CN=ocsp.example.com --ocsp

Warning: The CommonName in the certificates subject must match the domain where you host your django-ca
installation.

8.1.2 Configure generic views

The final step in configuring an OCSP responder for the CA is configuring the HTTP endpoint. If you’ve installed
django-ca as a full project or include django_ca.urls in your root URL config, configure the CA_OCSP_URLS
setting. It’s a dictionary configuring instances of OCSPView . Keys become part of the URL pattern, the value is a
dictionary for the arguments of the view. For example:

21

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol

django-ca Documentation, Release 1.2.0

CA_OCSP_URLS = {
'root': {

'ca': '34:D6:02:B5:B8:27:4F:51:9A:16:0C:B8:56:B7:79:3F',
'responder_key': '/usr/share/django-ca/ocsp.key',
'responder_cert': 'F2:5F:7F:31:E1:91:4F:D7:9A:D4:19:65:17:3D:43:88',
optional: How long OCSP responses are valid
#'expires': 3600,

},
}

This would mean that your OCSP responder would be located at /django_ca/ocsp/root/ at whatever domain
you have configured your WSGI daemon. If you’re using your own URL configuration, pass the same parameters to
the as_view() method.

class django_ca.views.OCSPView(**kwargs)
View to provide an OCSP responder.

See also:

This is heavily inspired by https://github.com/threema-ch/ocspresponder/blob/master/ocspresponder/__init__.py.

ca = None
The serial of your certificate authority.

expires = 600
Time in seconds that the responses remain valid. The default is 600 seconds or ten minutes.

responder_cert = None
Absolute path or serial of the public key used for signing OCSP responses.

responder_key = None
Absolute path to the private key used for signing OCSP responses.

8.1.3 Add OCSP URL to new certificates

To include the URL to an OCSP service to newly issued certificates (you cannot add it to already issued certificates,
obviously), either set it in the admin interface or via the command line:

$ python manage.py list_cas
34:D6:02:B5:B8:27:4F:51:9A:16:0C:B8:56:B7:79:3F - Root CA
$ python manage.py edit_ca --ocsp-url=http://ocsp.example.com/ \
> 34:D6:02:B5:B8:27:4F:51:9A:16:0C:B8:56:B7:79:3F

8.2 Run an OCSP responser with openssl ocsp

OpenSSL ships with the openssl ocsp command that allows you to run an OCSP responser, but note that the
manpage says “only useful for test and demonstration purposes”.

To use the command, generate an index:

$ python manage.py dump_ocsp_index ocsp.index

OpenSSL itself allows you to run an OCSP responder with this command:

$ openssl ocsp -index ocsp.index -port 8888 -rsigner ocsp.pem \
> -rkey ocsp.example.com.key -CA files/ca.crt -text

Development documentation:

22 Chapter 8. Run a OCSP responder

https://github.com/threema-ch/ocspresponder/blob/master/ocspresponder/__init__.py

CHAPTER 9

x509 extensions in other CAs

This page documents the x509 extensions (e.g. for CRLs, etc.) set by other CAs. The information here is used by
django-ca to initialize and sign certificate authorities and certificates.

Helpful descriptions of the meaning of various extensions can also be found in x509v3_config(5SSL) (online).

9.1 authorityInfoAccess

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.2.1

The “CA Issuers” is a URI pointing to the signing certificate. The certificate is in DER/ASN1 format and has a
Content-Type: application/x-x509-ca-cert header (except where noted).

9.1.1 In CA certificates

Let’s Encrypt is notable here because its CA Issuers field points to a pkcs7 file and the HTTP response returns a
Content-Type: application/x-pkcs7-mime header.

The certificate pointed to by the CA Issuers field is the root certificate (so the Comodo DV CA points to the AddTrust
CA that signed the Comodo Root CA).

23

https://www.openssl.org/docs/manmaster/apps/x509v3_config.html
https://tools.ietf.org/html/rfc5280#section-4.2.2.1

django-ca Documentation, Release 1.2.0

CA Value
Let’s Encrypt

• OCSP - URI:http://isrg.trustid.ocsp.identrust.com
• CA Issuers - URI:http://apps.identrust.com/roots/dstrootcax3.p7c

StartSSL (not present)
StartSSL Class 2

• OCSP - URI:http://ocsp.startssl.com/ca
• CA Issuers - URI:http://aia.startssl.com/certs/ca.crt

StartSSL Class 3
• OCSP - URI:http://ocsp.startssl.com
• CA Issuers - URI:http://aia.startssl.com/certs/ca.crt

GeoTrust Global (not present)
RapidSSL G3 OCSP - URI:http://g.symcd.com
Comodo OCSP - URI:http://ocsp.usertrust.com
Comodo DV

• CA Issuers - URI:http://crt.comodoca.com/COMODORSAAddTrustCA.crt
• OCSP - URI:http://ocsp.comodoca.com

GlobalSign (not present)
GlobalSign DV OCSP - URI:http://ocsp.globalsign.com/rootr1

9.1.2 In signed certificates

Let’s Encrypt is again special in that the response has a Content-Type: application/pkix-cert header
(but at least it’s in DER format like every other certificate). RapidSSL uses Content-Type: text/plain.

The CA Issuers field sometimes points to the signing certificate (e.g. StartSSL) or to the root CA (e.g. Comodo DV,
which points to the AddTrust Root CA)

CA Value
Let’s Encrypt

• OCSP - URI:http://ocsp.int-x1.letsencrypt.org/
• CA Issuers - URI:http://cert.int-x1.letsencrypt.org

StartSSL Class 2
• OCSP - URI:http://ocsp.startssl.com/sub/class2/server/ca
• CA Issuers - URI:http://aia.startssl.com/certs/sub.class2.server.ca.crt

StartSSL Class 3
• OCSP - URI:http://ocsp.startssl.com
• CA Issuers - URI:http://aia.startssl.com/certs/sca.server3.crt

RapidSSL G3
• OCSP - URI:http://gv.symcd.com
• CA Issuers - URI:http://gv.symcb.com/gv.crt

Comodo DV
• CA Issuers - URI:http://crt.comodoca.com/COMODORSADomainValidationSecureServerCA.crt
• OCSP - URI:http://ocsp.comodoca.com

GlobalSign DV
• CA Issuers - URI:http://secure.globalsign.com/cacert/gsdomainvalsha2g2r1.crt
• OCSP - URI:http://ocsp2.globalsign.com/gsdomainvalsha2g2

24 Chapter 9. x509 extensions in other CAs

django-ca Documentation, Release 1.2.0

9.2 authorityKeyIdentifier

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.1.1

A hash identifying the CA used to sign the certificate. In theory the identifier may also be based on the issuer name
and serial number, but in the wild, all certificates reference the subjectKeyIdentifier. Self-signed certificates (e.g. Root
CAs, like StartSSL and Comodo below) will reference themself, while signed certificates reference the signed CA,
e.g.:

Name subjectKeyIdentifier authorityKeyIdentifier
Root CA foo keyid:foo
Intermediate CA bar keyid:foo
Client Cert bla keyid:bar

9.2.1 In CA certificates

CA Value
Let’s Encrypt keyid:C4:A7:B1:A4:7B:2C:71:FA:DB:E1:4B:90:75:FF:C4:15:60:85:89:10
StartSSL keyid:4E:0B:EF:1A:A4:40:5B:A5:17:69:87:30:CA:34:68:43:D0:41:AE:F2
StartSSL Class 2 keyid:4E:0B:EF:1A:A4:40:5B:A5:17:69:87:30:CA:34:68:43:D0:41:AE:F2
StartSSL Class 3 keyid:4E:0B:EF:1A:A4:40:5B:A5:17:69:87:30:CA:34:68:43:D0:41:AE:F2
GeoTrust Global keyid:C0:7A:98:68:8D:89:FB:AB:05:64:0C:11:7D:AA:7D:65:B8:CA:CC:4E
RapidSSL G3 keyid:C0:7A:98:68:8D:89:FB:AB:05:64:0C:11:7D:AA:7D:65:B8:CA:CC:4E
Comodo keyid:AD:BD:98:7A:34:B4:26:F7:FA:C4:26:54:EF:03:BD:E0:24:CB:54:1A
Comodo DV keyid:BB:AF:7E:02:3D:FA:A6:F1:3C:84:8E:AD:EE:38:98:EC:D9:32:32:D4
GlobalSign (not present)
GlobalSign DV keyid:60:7B:66:1A:45:0D:97:CA:89:50:2F:7D:04:CD:34:A8:FF:FC:FD:4B

9.2.2 In signed certificates

CA Value
Let’s Encrypt keyid:A8:4A:6A:63:04:7D:DD:BA:E6:D1:39:B7:A6:45:65:EF:F3:A8:EC:A1
StartSSL Class 2 keyid:11:DB:23:45:FD:54:CC:6A:71:6F:84:8A:03:D7:BE:F7:01:2F:26:86
StartSSL Class 3 keyid:B1:3F:1C:92:7B:92:B0:5A:25:B3:38:FB:9C:07:A4:26:50:32:E3:51
RapidSSL G3 keyid:C3:9C:F3:FC:D3:46:08:34:BB:CE:46:7F:A0:7C:5B:F3:E2:08:CB:59
Comodo DV keyid:90:AF:6A:3A:94:5A:0B:D8:90:EA:12:56:73:DF:43:B4:3A:28:DA:E7
GlobalSign DV keyid:EA:4E:7C:D4:80:2D:E5:15:81:86:26:8C:82:6D:C0:98:A4:CF:97:0F

9.3 basicConstraints

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.1.9

The basicConstraints extension specifies if the certificate can be used as a certificate authority. It is always
marked as critical. The pathlen attribute specifies the levels of possible intermediate CAs. If not present, the level
of intermediate CAs is unlimited, a pathlen:0 means that the CA itself can not issue certificates with CA:TRUE
itself.

9.2. authorityKeyIdentifier 25

https://tools.ietf.org/html/rfc5280#section-4.2.1.1
https://tools.ietf.org/html/rfc5280#section-4.2.1.9

django-ca Documentation, Release 1.2.0

9.3.1 In CA certificates

CA Value
Let’s Encrypt (critical) CA:TRUE, pathlen:0
StartSSL (critical) CA:TRUE
StartSSL Class 2 (critical) CA:TRUE, pathlen:0
StartSSL Class 3 (critical) CA:TRUE, pathlen:0
GeoTrust Global (critical) CA:TRUE
RapidSSL G3 (critical) CA:TRUE, pathlen:0
Comodo (critical) CA:TRUE
Comodo DV (critical) CA:TRUE, pathlen:0
GlobalSign (critical) CA:TRUE
GlobalSign DV (critical) CA:TRUE, pathlen:0

9.3.2 In signed certificates

CA Value
Let’s Encrypt (critical) CA:FALSE
StartSSL Class 2 (critical) CA:FALSE
StartSSL Class 3 CA:FALSE
RapidSSL G3 (critical) CA:FALSE
Comodo DV (critical) CA:FALSE
GlobalSign DV CA:FALSE

9.4 crlDistributionPoints

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.1.13

In theory a complex multi-valued extension, this extension usually just holds a URI pointing to a Certificate Revokation
List (CRL).

Root certificate authorities (StartSSL, GeoTrust Global, GlobalSign) do not set this field. This usually isn’t a problem
since clients have a list of trusted root certificates anyway, and browsers and distributions should get regular updates
on the list of trusted certificates.

All CRLs linked here are all in DER/ASN1 format, and the Content-Type header in the response is set to
application/pkix-crl. Only Comodo uses application/x-pkcs7-crl, but it is also in DER/ASN1
format.

26 Chapter 9. x509 extensions in other CAs

https://tools.ietf.org/html/rfc5280#section-4.2.1.13

django-ca Documentation, Release 1.2.0

9.4.1 In CA certificates

CA Value Content-Type
Let’s Encrypt URI:http://crl.identrust.com/DSTROOTCAX3CRL.crl application/pkix-crl
StartSSL (not present)
StartSSL Class
2

URI:http://crl.startssl.com/sfsca.crl application/pkix-crl

StartSSL Class
3

URI:http://crl.startssl.com/sfsca.crl application/pkix-crl

GeoTrust
Global

(not present)

RapidSSL G3 URI:http://g.symcb.com/crls/gtglobal.crl application/pkix-crl
Comodo URI:http://crl.usertrust.com/AddTrustExternalCARoot.crl application/x-pkcs7-

crl
Comodo DV URI:http://crl.comodoca.com/COMODORSACertificationAuthority.crl application/x-pkcs7-

crl
GlobalSign (not present)
GlobalSign DV URI:http://crl.globalsign.net/root.crl application/pkix-crl

9.4.2 In signed certificates

Let’s Encrypt is so far the only CA that does not maintain a CRL for signed certificates. Major CAs usually don’t
fancy CRLs much because they are a large file (e.g. Comodos CRL is 1.5MB) containing all certificates and cause
major traffic for CAs. OCSP is just better in every way.

CA Value Content-Type
Let’s Encrypt (not present)
StartSSL
Class 2

URI:http://crl.startssl.com/crt2-crl.crl application/pkix-crl

StartSSL
Class 3

URI:http://crl.startssl.com/sca-server3.crl application/pkix-crl

RapidSSL G3 URI:http://gv.symcb.com/gv.crl application/pkix-crl
Comodo DV URI:http://crl.comodoca.com/COMODORSADomainValidationSecureServerCA.crlapplication/x-

pkcs7-crl
GlobalSign
DV

URI:http://crl.globalsign.com/gs/gsdomainvalsha2g2.crl application/pkix-crl

9.5 extendedKeyUsage

A list of purposes for which the certificate can be used for. CA certificates usually do not set this field.

9.5. extendedKeyUsage 27

django-ca Documentation, Release 1.2.0

9.5.1 In CA certificates

CA Value
Let’s Encrypt (not present)
StartSSL (not present)
StartSSL Class 2 (not present)
StartSSL Class 3 TLS Web Client Authentication, TLS Web Server Authentication
GeoTrust Global (not present)
RapidSSL G3 (not present)
Comodo (not present)
Comodo DV TLS Web Server Authentication, TLS Web Client Authentication
GlobalSign (not present)
GlobalSign DV (not present)

9.5.2 In signed certificates

CA Value
Let’s Encrypt TLS Web Server Authentication, TLS Web Client Authentication
StartSSL Class 2 TLS Web Client Authentication, TLS Web Server Authentication
StartSSL Class 3 TLS Web Client Authentication, TLS Web Server Authentication
RapidSSL G3 TLS Web Server Authentication, TLS Web Client Authentication
Comodo DV TLS Web Server Authentication, TLS Web Client Authentication
GlobalSign DV TLS Web Server Authentication, TLS Web Client Authentication

9.6 issuerAltName

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.1.7

Only StartSSL sets this field in its signed certificates. It’s a URI pointing to their homepage.

9.6.1 In CA certificates

CA Value
Let’s Encrypt (not present)
StartSSL (not present)
StartSSL Class 2 (not present)
StartSSL Class 3 (not present)
GeoTrust Global (not present)
RapidSSL G3 (not present)
Comodo (not present)
Comodo DV (not present)
GlobalSign (not present)
GlobalSign DV (not present)

28 Chapter 9. x509 extensions in other CAs

https://tools.ietf.org/html/rfc5280#section-4.2.1.7

django-ca Documentation, Release 1.2.0

9.6.2 In signed certificates

CA Value
Let’s Encrypt (not present)
StartSSL Class 2 URI:http://www.startssl.com/
StartSSL Class 3 URI:http://www.startssl.com/
RapidSSL G3 (not present)
Comodo DV (not present)
GlobalSign DV (not present)

9.7 keyUsage

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.1.3

List of permitted key usages. Usually marked as critical, except for certificates signed by StartSSL.

9.7.1 In CA certificates

CA Value
Let’s Encrypt (critical) Digital Signature, Certificate Sign, CRL Sign
StartSSL (critical) Certificate Sign, CRL Sign
StartSSL Class 2 (critical) Certificate Sign, CRL Sign
StartSSL Class 3 (critical) Certificate Sign, CRL Sign
GeoTrust Global (critical) Certificate Sign, CRL Sign
RapidSSL G3 (critical) Certificate Sign, CRL Sign
Comodo (critical) Digital Signature, Certificate Sign, CRL Sign
Comodo DV (critical) Digital Signature, Certificate Sign, CRL Sign
GlobalSign (critical) Certificate Sign, CRL Sign
GlobalSign DV (critical) Certificate Sign, CRL Sign

9.7.2 In signed certificates

CA Value
Let’s Encrypt (critical) Digital Signature, Key Encipherment
StartSSL Class 2 Digital Signature, Key Encipherment, Key Agreement
StartSSL Class 3 Digital Signature, Key Encipherment
RapidSSL G3 (critical) Digital Signature, Key Encipherment
Comodo DV (critical) Digital Signature, Key Encipherment
GlobalSign DV (critical) Digital Signature, Key Encipherment

9.8 subjectKeyIdentifier

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.1.2

The subjectKeyIdentifier extension provides a means of identifying certificates. It is a mandatory extension for CA
certificates. Currently only RapidSSL does not set this for signed certificates.

9.7. keyUsage 29

https://tools.ietf.org/html/rfc5280#section-4.2.1.3
https://tools.ietf.org/html/rfc5280#section-4.2.1.2

django-ca Documentation, Release 1.2.0

The value of the subjectKeyIdentifier extension reappears in the authorityKeyIdentifier extension (prefixed with
keyid:).

9.8.1 In CA certificates

CA Value
Let’s Encrypt A8:4A:6A:63:04:7D:DD:BA:E6:D1:39:B7:A6:45:65:EF:F3:A8:EC:A1
StartSSL 4E:0B:EF:1A:A4:40:5B:A5:17:69:87:30:CA:34:68:43:D0:41:AE:F2
StartSSL Class 2 11:DB:23:45:FD:54:CC:6A:71:6F:84:8A:03:D7:BE:F7:01:2F:26:86
StartSSL Class 3 B1:3F:1C:92:7B:92:B0:5A:25:B3:38:FB:9C:07:A4:26:50:32:E3:51
GeoTrust Global C0:7A:98:68:8D:89:FB:AB:05:64:0C:11:7D:AA:7D:65:B8:CA:CC:4E
RapidSSL G3 C3:9C:F3:FC:D3:46:08:34:BB:CE:46:7F:A0:7C:5B:F3:E2:08:CB:59
Comodo BB:AF:7E:02:3D:FA:A6:F1:3C:84:8E:AD:EE:38:98:EC:D9:32:32:D4
Comodo DV 90:AF:6A:3A:94:5A:0B:D8:90:EA:12:56:73:DF:43:B4:3A:28:DA:E7
GlobalSign 60:7B:66:1A:45:0D:97:CA:89:50:2F:7D:04:CD:34:A8:FF:FC:FD:4B
GlobalSign DV EA:4E:7C:D4:80:2D:E5:15:81:86:26:8C:82:6D:C0:98:A4:CF:97:0F

9.8.2 In signed certificates

CA Value
Let’s Encrypt F4:F3:B8:F5:43:90:2E:A2:7F:DD:51:4A:5F:3E:AC:FB:F1:33:EE:95
StartSSL Class 2 C7:AA:D9:A4:F0:BC:D1:C1:1B:05:D2:19:71:0A:86:F8:58:0F:F0:99
StartSSL Class 3 F0:72:65:5E:21:AA:16:76:2C:6F:D0:63:53:0C:68:D5:89:50:2A:73
RapidSSL G3 (not present)
Comodo DV F2:CB:1F:E9:6E:D5:43:E3:85:75:98:5F:97:7C:B0:59:7F:D5:C0:C0
GlobalSign DV 52:5A:45:5B:D4:9D:AC:65:30:BD:67:80:6C:D1:A1:3E:09:F7:FD:92

9.9 Other extensions

Extensions used by certificates encountered in the wild that django-ca does not (yet) support in any way.

9.9.1 In CA certificates

CA Value
Let’s Encrypt X509v3 Certificate Policies, X509v3 Name Constraints
StartSSL X509v3 Certificate Policies, Netscape Cert Type, Netscape Comment
StartSSL Class 2 X509v3 Certificate Policies
StartSSL Class 3 X509v3 Certificate Policies
GeoTrust Global (none)
RapidSSL G3 X509v3 Certificate Policies
Comodo X509v3 Certificate Policies
Comodo DV X509v3 Certificate Policies
GlobalSign (none)
GlobalSign DV X509v3 Certificate Policies

30 Chapter 9. x509 extensions in other CAs

django-ca Documentation, Release 1.2.0

9.9.2 In signed certificates

CA Value
Let’s Encrypt X509v3 Certificate Policies
StartSSL Class 2 X509v3 Certificate Policies
StartSSL Class 3 X509v3 Certificate Policies
RapidSSL G3 X509v3 Certificate Policies
Comodo DV X509v3 Certificate Policies
GlobalSign DV X509v3 Certificate Policies

9.9. Other extensions 31

django-ca Documentation, Release 1.2.0

32 Chapter 9. x509 extensions in other CAs

CHAPTER 10

ChangeLog

10.1 1.3.0 (2016-07-09)

• Add links for downloading the certificate in PEM/ASN format in the admin interface.

• Add an extra chapter in documentation on how to create intermediate CAs.

• Correctly set the issuer field when generating intermediate CAs.

• fab init_demo now actually creates an intermediate CA.

• Fix help text for the --parent parameter for manage.py init_ca.

10.2 1.2.2 (2016-06-30)

• Rebuild to remove old migrations accidentally present in previous release.

10.3 1.2.1 (2016-06-06)

• Add the CA_NOTIFICATION_DAYS setting so that watchers don’t receive too many emails.

• Fix changing a certificate in the admin interface (only watchers can be changed at present).

10.4 1.2.0 (2016-06-05)

• django-ca now provides a complete OCSP responder.

• Various tests are now run with a pre-computed CA, making tests much fater and output more predictable.

• Update lots of documentation.

10.5 1.1.1 (2016-06-05)

• Fix the fab init_demo command.

• Fix installation via setup.py install, fixes #2 and #4. Thanks to Jon McKenzie for the fixes!

33

https://github.com/mathiasertl/django-ca/issues/2
https://github.com/mathiasertl/django-ca/issues/4

django-ca Documentation, Release 1.2.0

10.6 1.1.0 (2016-05-08)

• The subject given in the manage.py init_ca and manage.py sign_cert is now given in the same
form that is frequently used by OpenSSL, “/C=AT/L=...”.

• On the command line, both CAs and certificates can now be named either by their CommonName or with their
serial. The serial can be given with only the first few letters as long as it’s unique, as it is matched as long as the
serial starts with the given serial.

• Expiry time of CRLs can now be specified in seconds. manage.py dump_crl now uses the --expires
instead of the old --days parameter.

• The admin interface now accounts for cases where some or all CAs are not useable because the private key is
not accessable. Such a scenario might occur if the private keys are hosted on a different machine.

• The app now provides a generic view to generate CRLs. See Use generic view to host a CRL for more informa-
tion.

• Fix the display of the default value of the –ca args.

• Move this ChangeLog from a top-level .md file to this location.

• Fix shell example when issueing certificates.

10.7 1.0.1 (2016-04-27)

• Officially support Python2.7 again.

• Make sure that certificate authorities cannot be removed via the web interface.

10.8 1.0.0 (2016-04-27)

This represents a massive new release (hence the big version jump). The project now has a new name (django-ca
instead of just “certificate authority”) and is now installable via pip. Since versions prior to this release probably had
no users (as it wasn’t advertised anywhere), it includes several incompatible changes.

10.8.1 General

• This project now runs under the name django-ca instead of just “certificate authority”.

• Move the git repository is now hosted at https://github.com/mathiasertl/django-ca.

• This version now absolutely assumes Python3. Python2 is no longer supported.

• Require Django 1.8 or later.

• django-ca is now usable as a stand-alone project (via git) or as a reusable app (via pip).

10.8.2 Functionality

• The main app was renamed from certificate to django_ca. See below for how to upgrade.

34 Chapter 10. ChangeLog

https://github.com/mathiasertl/django-ca

django-ca Documentation, Release 1.2.0

10.8.3 manage.py interface

• manage.py commands are now renamed to be more specific:

– init -> init_ca

– sign -> sign_cert

– list -> list_certs

– revoke -> revoke_cert

– crl -> dump_crl

– view -> view_cert

– watch -> notify_expiring_certs

– watchers -> cert_watchers

• Several new manage.py commands:

– dump_ca to dump CA certificates.

– dump_cert to dump certificates to a file.

– dump_ocsp_index for an OCSP responder, dump_crl no longer outputs this file.

– edit_ca to edit CA properties from the command line.

– list_cas to list available CAs.

– view_ca to view a CA.

• Removed the manage.py remove command.

• dump_{ca,cert,crl} can now output DER/ASN1 data to stdout.

10.9 0.2.1 (2015-05-24)

• Signed certificates are valid five minutes in the past to account for possible clock skew.

• Shell-scripts: Correctly pass quoted parameters to manage.py.

• Add documentation on how to test CRLs.

• Improve support for OCSP.

10.10 0.2 (2015-02-08)

• The watchers command now takes a serial, like any other command.

• Reworked view command for more robustness.

– Improve output of certificate extensions.

– Add the -n/--no-pem option.

– Add the -e/--extensions option to print all certificate extensions.

– Make output clearer.

• The sign command now has

10.9. 0.2.1 (2015-05-24) 35

django-ca Documentation, Release 1.2.0

– a --key-usage option to override the keyUsage extended attribute.

– a --ext-key-usage option to override the extendedKeyUsage extended attribute.

– a --ocsp option to sign a certificate for an OCSP server.

• The default extendedKeyUsage is now serverAuth, not clientAuth.

• Update the remove command to take a serial.

• Ensure restrictive file permissions when creating a CA.

• Add requirements-dev.txt

10.11 0.1 (2015-02-07)

• Initial release

36 Chapter 10. ChangeLog

CHAPTER 11

Development

11.1 Setup demo

You can set up a demo using fab init_demo. First create a minimal localsettings.py file (in
ca/ca/localsettings.py):

DEBUG = True
SECRET_KEY = "whatever"

And then simply run fab init_demo from the root directory of your project.

11.2 Run test-suite

To run the test-suite, simply execute:

python setup.py test

... or just run some of the tests:

python setup.py test --suite=tests_command_dump_crl

To generate a coverate report:

python setup.py coverage

11.3 Useful OpenSSL commands

11.3.1 CRLs

Convert a CRL to text on stdout:

openssl crl -inform der -in sfsca.crl -noout -text

Convert a CRL to PEM to a file:

openssl crl -inform der -in sfsca.crl -outform pem -out test.pem

Verify a certificate using a CRL:

37

django-ca Documentation, Release 1.2.0

openssl verify -CAfile files/ca_crl.pem -crl_check cert.pem

11.3.2 OCSP

Run a OCSP responder:

openssl ocsp -index files/ocsp_index.txt -port 8888 \
-rsigner files/localhost.pem -rkey files/localhost.key \
-CA ca.pem -text

Verify a certificate using OCSP:

openssl ocsp -CAfile ca.pem -issuer ca.pem -cert cert.pem \
-url http://localhost:8888 -resp_text

11.3.3 Other

Convert a p7c/pkcs7 file to PEM (Let’s Encrypt CA Issuer field) (see also pkcs7(1SSL) - online):

openssl pkcs7 -inform der -in letsencrypt.p7c -print_certs \
-outform pem -out letsencrypt.pem

11.4 Development webserver via SSL

To test a certificate in your webserver, first install the root certificate authority in your browser, then run stunnel4
and manage.py runserver in two separate shells:

stunnel4
HTTPS=1 python manage.py runserver 8001

Then visit https://localhost:8443.

38 Chapter 11. Development

https://www.openssl.org/docs/manmaster/apps/pkcs7.html
https://localhost:8443

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

39

django-ca Documentation, Release 1.2.0

40 Chapter 12. Indices and tables

Index

C
ca (django_ca.views.OCSPView attribute), 22
CertificateRevocationListView (class in

django_ca.views), 20
content_type (django_ca.views.CertificateRevocationListView

attribute), 20

D
digest (django_ca.views.CertificateRevocationListView

attribute), 20

E
expires (django_ca.views.CertificateRevocationListView

attribute), 20
expires (django_ca.views.OCSPView attribute), 22

O
OCSPView (class in django_ca.views), 22

R
responder_cert (django_ca.views.OCSPView attribute),

22
responder_key (django_ca.views.OCSPView attribute),

22

T
type (django_ca.views.CertificateRevocationListView at-

tribute), 20

41

	Installation
	Update
	Custom settings
	Command-line interface
	Web interface
	Certificate authority management
	Host a Certificate Revokation List (CRL)
	Run a OCSP responder
	x509 extensions in other CAs
	ChangeLog
	Development
	Indices and tables

