
django-ca Documentation
Release 1.10.0

Mathias Ertl

Nov 03, 2018

Contents

1 Installation 3

2 Docker 7

3 Update 11

4 ChangeLog 13

5 Custom settings 23

6 Command-line interface 27

7 Web interface 37

8 Host a Certificate Revocation List (CRL) 39

9 Run a OCSP responder 43

10 Python API 47

11 Signals 49

12 django_ca.extensions - X509 extensions 51

13 django_ca.models - django-ca models 55

14 django_ca.subject - X509 Subject 59

15 django_ca.utils - utility functions 61

16 Development 67

17 Contribute 71

18 Release process 73

19 x509 extensions in other CAs 75

20 x509 extensions 87

i

21 Indices and tables 91

Python Module Index 93

ii

django-ca Documentation, Release 1.10.0

django-ca is a tool to manage TLS certificate authorities and easily issue and revoke certificates. It is based cryptogra-
phy and Django. It can be used as an app in an existing Django project or stand-alone with the basic project included.
Everything can be managed via the command line via manage.py commands - so no webserver is needed, if you’re
happy with the command-line.

Features:

• Create certificate authorities, issue and revoke certificates in minutes.

• Receive e-mail notifications of certificates about to expire.

• Certificate validation via the included OCSP responder and Certificate Revocation Lists (CRLs).

• Complete, consistent and powerful command line interface.

• Optional web interface for certificate handling (e.g. issuing, revoking, . . .).

• Written in pure Python2.7/Python3.4+, using Django 1.11 or later.

Installation/Configuration:

Contents 1

https://cryptography.io/
https://cryptography.io/
https://www.djangoproject.com/

django-ca Documentation, Release 1.10.0

2 Contents

CHAPTER 1

Installation

You can run django-ca as a regular app in any existing Django project of yours, but if you don’t have any Django
project running, you can run it as a standalone project.

Another easy way of running django-ca is as a Docker container.

1.1 Requirements

• Python 2.7 or Python 3.4+

• Django 1.11+

• Any database supported by Django (sqlite3/MySQL/PostgreSQL/. . .)

• Python, OpenSSL and libffi development headers

If you’re using an older system, you can consult this table to see what versions of Python, Django and cryptography
where tested with what release:

django-ca Python Django cryptography
1.4 2.7/3.4 - 3.6 1.8 - 1.10 1.7
1.5 2.7/3.4 - 3.6 1.8 - 1.11 1.7
1.6 2.7/3.4 - 3.6 1.8, 1.10 - 1.11 1.8
1.7 2.7/3.4 - 3.6 1.8, 1.10 - 2.0 2.1 - 2.2
1.8 2.7/3.4 - 3.6 1.11 - 2.0 2.1 - 2.2
1.9 2.7/3.4 - 3.6 1.11 - 2.1 2.1 - 2.3
1.10 2.7/3.4 - 3.7 1.11 - 2.1 2.1 - 2.3

1.2 As Django app (in your existing Django project)

This chapter assumes that you have an already running Django project and know how to use it.

3

django-ca Documentation, Release 1.10.0

You need various development headers for pyOpenSSL, on Debian/Ubuntu systems, simply install these packages:

$ apt-get install gcc python3-dev libffi-dev libssl-dev

You can install django-ca simply via pip:

$ pip install django-ca

and add it to your INSTALLED_APPS:

INSTALLED_APPS = [
... your other apps...

'django_ca',
]

. . . and configure the other available settings to your liking, then simply run:

$ python manage.py migrate
$ python manage.py collectstatic

FINALLY, create the root certificates for your CA:
(replace parameters after init_ca with your local details)
$ python manage.py init_ca RootCA \
> /C=AT/ST=Vienna/L=Vienna/O=Org/OU=OrgUnit/CN=ca.example.com

After that, django-ca should show up in your admin interface (see Web interface) and provide various manage.py
commands (see Command-line interface).

1.3 As standalone project

You can also install django-ca as a stand-alone project, if you install it via git. The project provides a command-line
interface that provides complete functionality. The web interface is optional.

Note: If you don’t want the private keys of your CAs on the same machine as the web interface, you can also host the
web interface on a second server that accesses the same database (CA private keys are hosted on the filesystem, not in
the database). You obviously will not be able to sign certificates using the web interface, but you can still e.g. revoke
certificates or run a OCSP responder.

In the following code-snippet, you’ll do all necessary steps to get a basic setup:

install dependencies (adapt to your distro):
$ apt-get install gcc git python3-dev libffi-dev libssl-dev virtualenv

clone git repository:
$ git clone https://github.com/mathiasertl/django-ca.git

create virtualenv:
$ cd django-ca
$ virtualenv -p /usr/bin/python3 .
$ source bin/activate

install Python dependencies:

(continues on next page)

4 Chapter 1. Installation

django-ca Documentation, Release 1.10.0

(continued from previous page)

$ pip install -U pip setuptools
$ pip install -r requirements.txt

In the above script, you have created a virtualenv, meaning that all libraries you install with pip install are
installed in the virtualenv (and don’t pollute your system). It also means that before you execute any manage.py
commands, you’ll have to activate your virtualenv, by doing, in the directory of the git checkout:

$ source bin/activate

1.3.1 Configure django-ca

Before you continue, you have to configure django-ca. Django uses a file called settings.py, but so you don’t
have to change any files managed by git, it includes localsettings.py in the same directory. So copy the
example file and edit it with your favourite editor:

$ cp ca/ca/localsettings.py.example ca/ca/localsettings.py

The most important settings are documented there, but you can of course use any setting provided by Django.

Warning: The SECRET_KEY and DATABASES settings are absolutely mandatory. If you use the Web interface,
the STATIC_ROOT setting is also mandatory.

1.3.2 Initialize the project

After you have configured django-ca, you need to initialize the project by running a few manage.py commands:

$ python ca/manage.py migrate

If you intend to run the webinterface (requires STATIC_ROOT setting!)
$ python ca/manage.py collectstatic

FINALLY, create a certificate authority:
(replace parameters after init_ca with your local details)
$ python manage.py init_ca RootCA /C=AT/ST=Vienna/L=Vienna/O=Org/CN=ca.example.com

Please also see Certificate authority management for further information on how to create certificate authorities. You
can also run init_ca with the -h parameter for available arguments.

1.3.3 Create manage.py shortcut

If you don’t want to always chdir to the git checkout, activate the virtualenv and only then run manage.py, you
might want to create a shortcut shell script somewhere in your PATH (e.g. /usr/local/bin):

#!/bin/bash

BASEDIR is the location of your git checkout
BASEDIR=/usr/local/share/ca
PYTHON=${BASEDIR}/bin/python
MANAGE=${BASEDIR}/ca/manage.py

(continues on next page)

1.3. As standalone project 5

http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://docs.djangoproject.com/en/dev/topics/settings/

django-ca Documentation, Release 1.10.0

(continued from previous page)

${PYTHON} ${MANAGE} "$@"

1.3.4 Setup a webserver

Setting up a webserver and all that comes with it is really out of scope of this document. The WSGI file is located in
ca/ca/wsgi.py. Django itself provides some info for using Apache and mod_wsgi, or you could use uWSGI and
nginx, or any of the many other options available.

1.4 Apache and mod_wsgi

Github user Raoul Thill notes that you need some special configuration variable if you use Apache together with
mod_wsgi (see here):

WSGIDaemonProcess django_ca processes=1 python-path=/opt/django-ca/ca:/opt/django-ca/
→˓ca/ca:/opt/django-ca/lib/python2.7/site-packages threads=5
WSGIProcessGroup django_ca
WSGIApplicationGroup %{GLOBAL}
WSGIScriptAlias / /opt/django-ca/ca/ca/wsgi.py

1.5 Regular cronjobs

Some manage.py commands are intended to be run as cronjobs:

assuming you cloned the repo at /root/:
HOME=/root/django-ca
PATH=/root/django-ca/bin

m h dom mon dow user command

notify watchers about certificates about to expire

* 8 * * * root python ca/manage.py notify_expiring_certs

recreate the CRL and the OCSP index
12 * * * * root python ca/manage.py dump_crl
14 * * * * root python ca/manage.py dump_ocsp_index

6 Chapter 1. Installation

ttps://docs.djangoproject.com/en/dev/topics/install/#install-apache-and-mod-wsgi
http://uwsgi-docs.readthedocs.org/en/latest/tutorials/Django_and_nginx.html
http://uwsgi-docs.readthedocs.org/en/latest/tutorials/Django_and_nginx.html
https://github.com/rthill
https://github.com/mathiasertl/django-ca/issues/12#issuecomment-247282915

CHAPTER 2

Docker

There is a django-ca Docker container available.

Assuming you have Docker installed, simply start the docker container with:

docker run --name=django-ca -p 8000:8000 mathiasertl/django-ca

You still need the shell to create one or more root CAs. For the admin interface, we also create a superuser:

docker exec -it django-ca python ca/manage.py createsuperuser
docker exec -it django-ca python ca/manage.py init_ca \

example /C=AT/ST=Vienna/L=Vienna/O=Org/CN=ca.example.com

. . . and visit http://localhost:8000/admin/.

2.1 Configuration

Every environment variable passed to the container that starts with DJANGO_CA_ is loaded as a normal setting:

docker run -e DJANGO_CA_CA_DIGEST_ALGORITHM=sha256 ...

This however only works for settings that are supposed to be a string. For more complex settings, you can pass a
YAML configuration file. For example, if you create a file /etc/django-ca/settings.yaml:

Certificates expire after ten years, default profile is "server":
CA_DEFAULT_EXPIRES: 3650
CA_DEFAULT_PROFILE: server

The standard Django DATABASES setting, see Django docs:
DATABASES:

default:
ENGINE: ...

And then start the container with:

7

http://localhost:8000/admin/

django-ca Documentation, Release 1.10.0

docker run -v /etc/django-ca/:/etc/django-ca \
-e DJANGO_CA_SETTINGS=/etc/django-ca/settings.yaml ...

. . . the container will load your settings file.

2.1.1 uWSGI

The container starts a uWSGI instance to let you use the admin interface. To replace the simple default configuration
for something else, you can pass DJANGO_CA_UWSGI_INI as environment variable to set a different location:

docker run -v /etc/django-ca/:/etc/django-ca \
-e DJANGO_CA_UWSGI_INI=/etc/django-ca/uwsgi.ini ...

The docker container comes with different ini files, each located in /usr/src/django-ca/uwsgi/:

config Description
stan-
dalone.ini

Default. Serves plain HTTP on port 8000, including static files. Suitable for basic setups.

uwsgi.ini Serves the uwsgi protocol supported by NGINX and Apache. Does not serve static files, has three
worker processes.

You can also always pass additional parameters to uWSGI using the DJANGO_CA_UWSGI_PARAMS environment
variable. For example, to start six worker processes, simply use:

docker run -v /etc/django-ca/:/etc/django-ca \
-e DJANGO_CA_UWSGI_PARAMS="--processes=6" ...

2.1.2 Use NGINX or Apache

In more professional setups, uWSGI will not serve HTTP directly, but a webserver like Apache or NGINX will be a
proxy to uWSGI communicating via a dedicated protocol. Usually, the webserver serves static files directly and not
via uWSGI.

Note: uWSGI supports a variety of webservers: https://uwsgi-docs.readthedocs.io/en/latest/WebServers.html

First, you need to create a directory that you can use as a Docker volume that will contain the static files that are served
by the webserver. Note that the process in the container runs with uid/gid of 9000 by default:

sudo mkdir /usr/share/django-ca
sudo chown 9000:9000 /usr/share/django-ca

Now configure your webserver appropriately, e.g. for NGINX:

server {
... everything else

location / {
uwsgi_pass 127.0.0.1:8000;
include uwsgi_params;

}

(continues on next page)

8 Chapter 2. Docker

https://uwsgi-docs.readthedocs.io/
https://uwsgi-docs.readthedocs.io/en/latest/WebServers.html
https://docs.docker.com/storage/volumes/

django-ca Documentation, Release 1.10.0

(continued from previous page)

location /static/ {
alias /home/mati/git/mati/django-ca/static/static/;

}
}

Now all that’s left is to start the container with that volume and set DJANGO_CA_UWSGI_INI to a different ini file
(note that this file is included in the container, see above):

docker run \
-e DJANGO_CA_UWSGI_INI=/usr/src/django-ca/uwsgi/uwsgi.ini \
-p 8000:8000 --name=django-ca \
-v /usr/share/django-ca:/usr/share/django-ca \
django-ca

Note that /usr/share/django-ca on the host will now contain the static files served by your webserver. If you
configured NGINX on port 80, you can now visit e.g. http://localhost/admin/ for the admin interface.

2.1.3 Run as different user

It is possible to run the uWSGI instance inside the container as a different user, but you have to make sure that
/var/lib/django-ca/ and /usr/share/django-ca/ are writable by that user.

Warning: /var/lib/django-ca/ contains all sensitive data including CA private keys and login credentials
to the admin interface. Make sure you protect this directory!

Assuming you want to use uid 3000 and gid 3001, set up appropriate folders on the host:

mkdir /var/lib/django-ca/ /usr/share/django-ca/
chown 3000:3001 /var/lib/django-ca/ /usr/share/django-ca/
chmod go-rwx /var/lib/django-ca/

If you want to keep any existing data, you now must copy the data for /var/lib/django-ca/ in the container to
the one on the host.

Now you can run the container with the different uid/gid:

docker run \
-p 8000:8000 --name=django-ca \
-v /usr/share/django-ca:/usr/share/django-ca \
-v /var/lib/django-ca:/var/lib/django-ca \
--user 3000:3001 \
django-ca

2.2 Build your own container

If you want to build the container by yourself, simply clone the repository and execute:

docker build -t django-ca .

2.2. Build your own container 9

http://localhost/admin/

django-ca Documentation, Release 1.10.0

10 Chapter 2. Docker

CHAPTER 3

Update

Since 1.0.0, this project updates like any other project. First, update the source code, if you use git:

git pull origin master

or if you installed django-ca via pip:

pip install -U django-ca

then upgrade with these commands:

pip install -U -r requirements.txt
python ca/manage.py migrate

if you use the webinterface
python ca/manage.py collectstatic

Warning: If you installed django-ca in a virtualenv, don’t forget to activate it before executing any python or pip
commands using:

source bin/activate

3.1 Update from 1.0.0b2

If you’re updating from a version earlier then 1.0.0 (which was the first real release), you have to first update to
1.0.0.b1 (see below), then to 1.0.0.b2, apply all migrations and reset existing migrations Since all installed instances
were probably private, it made sense to start with a clean state.

To update from an earlier git-checkout, to:

• Upgrade to version 1.0.0b2

11

django-ca Documentation, Release 1.10.0

• Apply all migrations.

• Upgrade to version 1.0.0

• Remove old migrations from the database:

python manage.py dbshell
> DELETE FROM django_migrations WHERE app='django_ca';

• Fake the first migration:

python manage.py migrate django_ca 0001 –fake

3.2 Update from pre 1.0.0b1

Prior to 1.0.0, this app was not intended to be reusable and so had a generic name. The app was renamed to django_ca,
so it can be used in other Django projects (or hopefully stand-alone, someday). Essentially, the upgrade path should
work something like this:

backup old data:
python manage.py dumpdata certificate --indent=4 > certs.json

update source code
git pull origin master

create initial models in the new app, but only the initial version!
python manage.py migrate django_ca 0001

update JSON with new model name
sed 's/"certificate.certificate"/"django_ca.certificate"/' > certs-updated.json

load data
python manage.py loaddata certs-updated.json

apply any other migrations
python manage.py migrate

12 Chapter 3. Update

CHAPTER 4

ChangeLog

4.1 1.10.0 (2018-11-03)

• New dependency: django-object-actions.

• Add ability to resign existing certificates.

• Management command list_cas now optionally supports a tree view.

• Use more consistent naming for extensions throughout the code and documentation.

• Renamed the --tls-features option of the sign_cert command to --tls-feature, in line with the
actual name of the extension.

• Allow the TLSFeature extension in profiles.

• Add link in the admin interface to easily download certificate bundles.

• Support ECC private keys for new Certificate Authorities.

• Store CA private keys in the more secure PKCS8 format.

• The Certificate change view now has a second “Revoke” button as object action next to the “History” button.

4.1.1 Python API

• Add the Python API as a fully supported interface to django-ca.

• New module django_ca.extensions to allow easy and consistent handling of X509 extensions.

• Fully document various member attributes of CertificateAuthority and Certificate, as well
Subject and as all new Python code.

• The parameters for functions in CertificateManager and CertificateAuthorityManager were
cleaned up for consistent naming and so that a user no longer needs to use classes from the cryptography libary.
Parameters are now optional if default settings exist.

• Variable names have been renamed to be more consistent to make the code more readable.

13

https://github.com/crccheck/django-object-actions
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/serialization/#cryptography.hazmat.primitives.serialization.PrivateFormat.PKCS8

django-ca Documentation, Release 1.10.0

4.1.2 Testing

• Also test with Python 3.7.0.

• Add configuration for tox.

• Speed up test-suite by using force_login() and PASSWORD_HASHERS.

• Load keys and certs in for every testcase instead for every class, improving testcase isolation.

• Add two certificates that include all and no extensions at all respectively to be able to test edge cases more
consistently and thoroughly.

• Add function cmd_e2e to call manage.py scripts in a way that arguments are passed by argparse as if
they where called from the command-line. This allows more complete testing including parsing commandline
arguments.

• Error on any warnings coming from django-ca when running the test-suite.

4.2 1.9.0 (2018-08-25)

• Allow the creation of Certificates with multiple OUs in their subject (command-line only).

• Fix issues with handling CAs with a password on the command-line.

• Fix handling of certificates with no CommonName and/or no x509 extensions.

• Add support for displaying Signed Certificate Timestamps (SCT) Lists, as described in RFC 6962, section 3.3.

• Add limited support for displaying Certificate Policies, as described in RFC 5280, section 4.2.14 and RFC 3647.

• Correctly display extensions with an OID unknown to django-ca or even cryptography.

• Properly escape x509 extensions to prevent any injection attacks.

• Django 2.1 is now fully supported.

• Fix example command to generate a CSR (had a stray ‘/’).

• Run test-suite with template debugging enabled to catch silently skipped template errors.

4.2.1 Docker

• Base the Docker image on python:3-alpine (instead of python:3), yielding a much smaller image
(~965MB -> ~235MB).

• Run complete test-suite in a separate build stage when building the image.

• Provide uwsgi.ini for fast deployments with the uwsgi protocol.

• Add support for passing additional parameters to uWSGI using the DJANGO_CA_UWSGI_PARAMS environ-
ment variable.

• Create user/group with a predefined uid/gid of 9000 to allow better sharing of containers.

• Add /usr/share/django-ca/ as named volume, allowing a setup where an external webserver serves
static files.

• Add documentation on how to run the container in combination with an external webserver.

• Add documentation on how to run the container as a different uid/gid.

14 Chapter 4. ChangeLog

https://tox.readthedocs.io/en/latest/
https://docs.djangoproject.com/en/dev/topics/testing/tools/#django.test.Client.force_login
https://docs.djangoproject.com/en/dev/topics/testing/overview/#password-hashing
https://docs.python.org/3.6/library/warnings.html#module-warnings
https://tools.ietf.org/html/rfc6962#section-3.3
https://tools.ietf.org/html/rfc5280#section-4.2.1.4
https://tools.ietf.org/html/rfc3647

django-ca Documentation, Release 1.10.0

4.3 1.8.0 (2018-07-08)

• Add Django signals to important events to let users add custom actions (such as email notifications etc.) to those
events (fixes #39).

• Provide a Docker container for fast deployment of django-ca.

• Add the CA_CUSTOM_APPS setting to let users that use django-ca as a standalone project add custom apps,
e.g. to register signals.

• Make the otherName extension actually usable and tested (see PR47)

• Add the smartcardLogon and msKDC extended key usage types. They are needed for some AD and OpenL-
DAP improvements (see PR46)

• Improve compatability with newer idna versions (".com" now also throws an error).

• Drop support for Django 1.8 and Django 1.10.

• Improve support for yet-to-be-released Django 2.1.

• Fix admin view of certificates with no subjectAltName.

4.4 1.7.0 (2017-12-14)

• Django 2.0 is now fully supported. This release still supports Django 1.8, 1.10 and 1.11.

• Add support for the TLSFeature extension.

• Do sanity checks on the “pathlen” attribute when creating Certificate Authorities.

• Add sanity checks when creating CAs:

– When creating an intermediate CA, check the pathlen attribute of the parent CA to make sure that the
resulting CA is not invalid.

– Refuse to add a CRL or OCSP service to root CAs. These attributes are not meaningful there.

• Massively update documentation for the command-line interface.

• CAs can now be identified using name or serial (previously: only by serial) in CA_OCSP_URLS.

• Make fab init_demo a lot more useful by signing certificates with the client CA and include CRL and
OCSP links.

• Run fab init_demo and documentation generation through Travis-CI.

• Always display all extensions in the django admin interface.

• NameConstraints are now delimited using a , instead of a ;, for consistency with other parameters and so no
bash special character is used.

4.4.1 Bugfixes

• Check for permissions when downloading certificates from the admin interface. Previously, users without admin
interface access but without permissions to access certificates, where able to guess the URL and download public
keys.

• Add a missing migration.

• Fix the value of the crlDistributionPoints x509 extension when signing certificates with Python2.

4.3. 1.8.0 (2018-07-08) 15

https://github.com/mathiasertl/django-ca/issues/39
https://github.com/mathiasertl/django-ca/pull/47
https://github.com/mathiasertl/django-ca/pull/46

django-ca Documentation, Release 1.10.0

• The Content-Type header of CRL responses now defaults to the correct value regardless of type (DER or
PEM) used.

• If a wrong CA is specified in CA_OCSP_URLS, an OCSP internal error is returned instead of an uncought
exception.

• Fix some edge cases for serial conversion in Python2. Some serials where converted with an “L” prefix in
Python 2, because hex(0L) returns "0x0L".

4.5 1.6.3 (2017-10-21)

• Fix various operations when USE_TZ is True.

• Email addresses are now independently validated by validate_email. cryptography 2.1 no longer validates
email addresses itself.

• Require cryptography>=2.1. Older versions should not be broken, but the output changes breaking
doctests, meaning they’re no longer tested either.

• CA keys are no longer stored with colons in their filename, fixing init_ca under Windows.

4.6 1.6.2 (2017-07-18)

• No longer require a strict cryptography version but only >=1.8. The previously pinned version is incompatible
with Python 3.5.

• Update requirements files to newest versions.

• Update imports to django.urls.reverse so they are compatible with Django 2.0 and 1.8.

• Make sure that manage.py check exit status is not ignored for setup.py code_quality.

• Conform to new sorting restrictions for isort.

4.7 1.6.1 (2017-05-05)

• Fix signing of wildcard certificates (thanks RedNixon).

• Add new management commands import_ca and import_cert so users can import existing CAs and
certificates.

4.8 1.6.0 (2017-04-21)

4.8.1 New features and improvements

• Support CSRs in DER format when signing a certificate via manage.py sign_cert.

• Support encrypting private keys of CAs with a password.

• Support Django 1.11.

• Allow creating CRLs of disabled CAs via manage.py dump_crl.

16 Chapter 4. ChangeLog

https://github.com/mathiasertl/django-ca/pull/25

django-ca Documentation, Release 1.10.0

• Validate DNSNames when parsing general names. This means that signing a certificate with CommonName
that is not a valid domain name fails if it should also be added as subjectAltName (see --cn-in-san option).

• When configuring OCSPView , the responder key and certificate are verified during configuration. An erroneous
configuration thus throws an error on startup, not during runtime.

• The testsuite now tests certificate signatures itself via pyOpenSSL, so an independent library is used for veri-
fication.

4.8.2 Bugfixes

• Fix the authorityKeyIdentifier extension when signing certificates with an intermediate CA.

• Fix creation of intermediate CAs.

4.9 1.5.1 (2017-03-07)

• Increase minimum field length of serial and common name fields.

• Tests now call full_clean() for created models. SQLite (which is used for testing) does not enforce the
max_length parameter.

4.10 1.5.0 (2017-03-05)

• Completely remove pyOpenSSL and consistently use cryptography.

• Due to the transitition to cryptography, some features have been removed:

– The tlsfeature extension is no longer supported. It will be again once cryptography adds support.

– The msCodeInd, msCodeCom, msCTLSign, msEFS values for the ExtendedKeyUsage extension are
no longer supported. Support for these was largely academic anyway, so they most likely will not be added
again.

– TEXT is no longer a supported output format for dumping certificates.

• The keyUsage extension is now marked as critical for certificate authorities.

• Add the privilegeWithdrawn and aACompromise attributes for revocation lists.

4.11 1.4.1 (2017-02-26)

• Update requirements.

• Use Travis CI for continuous integration. django-ca is now tested with Python 2.7, 3.4, 3.5, 3.6 and nightly,
using Django 1.8, 1.9 and 1.10.

• Fix a few test errors for Django 1.8.

• Examples now consistently use 4096 bit certificates.

• Some functionality is now migrated to cryptography in the ongoing process to deprecate pyOpenSSL
(which is no longer maintained).

• OCSPView now supports directly passing the public key as bytes. As a consequence, a bad certificate is now
only detected at runtime.

4.9. 1.5.1 (2017-03-07) 17

https://cryptography.io/
https://travis-ci.org

django-ca Documentation, Release 1.10.0

4.12 1.4.0 (2016-09-09)

• Make sure that Child CAs never expire after their parents. If the user specifies an expiry after that of the parent,
it is silently changed to the parents expiry.

• Make sure that certificates never expire after their CAs. If the user specifies an expiry after that of the parent,
throw an error.

• Rename the --days parameter of the sign_cert command to --expires to match what we use for
init_ca.

• Improve help-output of --init-ca and --sign-cert by further grouping arguments into argument groups.

• Add ability to add CRL-, OCSP- and Issuer-URLs when creating CAs using the --ca-* options.

• Add support for the nameConstraints X509 extension when creating CAs. The option to the init_ca
command is --name-constraint and can be given multiple times to indicate multiple constraints.

• Add support for the tlsfeature extension, a.k.a. “TLS Must Staple”. Since OpenSSL 1.1 is required for
this extension, support is currently totally untested.

4.13 1.3.0 (2016-07-09)

• Add links for downloading the certificate in PEM/ASN format in the admin interface.

• Add an extra chapter in documentation on how to create intermediate CAs.

• Correctly set the issuer field when generating intermediate CAs.

• fab init_demo now actually creates an intermediate CA.

• Fix help text for the --parent parameter for manage.py init_ca.

4.14 1.2.2 (2016-06-30)

• Rebuild to remove old migrations accidentally present in previous release.

4.15 1.2.1 (2016-06-06)

• Add the CA_NOTIFICATION_DAYS setting so that watchers don’t receive too many emails.

• Fix changing a certificate in the admin interface (only watchers can be changed at present).

4.16 1.2.0 (2016-06-05)

• django-ca now provides a complete OCSP responder.

• Various tests are now run with a pre-computed CA, making tests much fater and output more predictable.

• Update lots of documentation.

18 Chapter 4. ChangeLog

django-ca Documentation, Release 1.10.0

4.17 1.1.1 (2016-06-05)

• Fix the fab init_demo command.

• Fix installation via setup.py install, fixes #2 and #4. Thanks to Jon McKenzie for the fixes!

4.18 1.1.0 (2016-05-08)

• The subject given in the manage.py init_ca and manage.py sign_cert is now given in the same
form that is frequently used by OpenSSL, “/C=AT/L=. . . ”.

• On the command line, both CAs and certificates can now be named either by their CommonName or with their
serial. The serial can be given with only the first few letters as long as it’s unique, as it is matched as long as the
serial starts with the given serial.

• Expiry time of CRLs can now be specified in seconds. manage.py dump_crl now uses the --expires
instead of the old --days parameter.

• The admin interface now accounts for cases where some or all CAs are not useable because the private key is
not accessable. Such a scenario might occur if the private keys are hosted on a different machine.

• The app now provides a generic view to generate CRLs. See Use generic view to host a CRL for more informa-
tion.

• Fix the display of the default value of the –ca args.

• Move this ChangeLog from a top-level .md file to this location.

• Fix shell example when issueing certificates.

4.19 1.0.1 (2016-04-27)

• Officially support Python2.7 again.

• Make sure that certificate authorities cannot be removed via the web interface.

4.20 1.0.0 (2016-04-27)

This represents a massive new release (hence the big version jump). The project now has a new name (django-ca
instead of just “certificate authority”) and is now installable via pip. Since versions prior to this release probably had
no users (as it wasn’t advertised anywhere), it includes several incompatible changes.

4.20.1 General

• This project now runs under the name django-ca instead of just “certificate authority”.

• Move the git repository is now hosted at https://github.com/mathiasertl/django-ca.

• This version now absolutely assumes Python3. Python2 is no longer supported.

• Require Django 1.8 or later.

• django-ca is now usable as a stand-alone project (via git) or as a reusable app (via pip).

4.17. 1.1.1 (2016-06-05) 19

https://github.com/mathiasertl/django-ca/issues/2
https://github.com/mathiasertl/django-ca/issues/4
https://github.com/mathiasertl/django-ca

django-ca Documentation, Release 1.10.0

4.20.2 Functionality

• The main app was renamed from certificate to django_ca. See below for how to upgrade.

4.20.3 manage.py interface

• manage.py commands are now renamed to be more specific:

– init -> init_ca

– sign -> sign_cert

– list -> list_certs

– revoke -> revoke_cert

– crl -> dump_crl

– view -> view_cert

– watch -> notify_expiring_certs

– watchers -> cert_watchers

• Several new manage.py commands:

– dump_ca to dump CA certificates.

– dump_cert to dump certificates to a file.

– dump_ocsp_index for an OCSP responder, dump_crl no longer outputs this file.

– edit_ca to edit CA properties from the command line.

– list_cas to list available CAs.

– view_ca to view a CA.

• Removed the manage.py remove command.

• dump_{ca,cert,crl} can now output DER/ASN1 data to stdout.

4.21 0.2.1 (2015-05-24)

• Signed certificates are valid five minutes in the past to account for possible clock skew.

• Shell-scripts: Correctly pass quoted parameters to manage.py.

• Add documentation on how to test CRLs.

• Improve support for OCSP.

4.22 0.2 (2015-02-08)

• The watchers command now takes a serial, like any other command.

• Reworked view command for more robustness.

– Improve output of certificate extensions.

– Add the -n/--no-pem option.

20 Chapter 4. ChangeLog

django-ca Documentation, Release 1.10.0

– Add the -e/--extensions option to print all certificate extensions.

– Make output clearer.

• The sign command now has

– a --key-usage option to override the keyUsage extended attribute.

– a --ext-key-usage option to override the extendedKeyUsage extended attribute.

– a --ocsp option to sign a certificate for an OCSP server.

• The default extendedKeyUsage is now serverAuth, not clientAuth.

• Update the remove command to take a serial.

• Ensure restrictive file permissions when creating a CA.

• Add requirements-dev.txt

4.23 0.1 (2015-02-07)

• Initial release

4.23. 0.1 (2015-02-07) 21

django-ca Documentation, Release 1.10.0

22 Chapter 4. ChangeLog

CHAPTER 5

Custom settings

You can use any of the settings understood by Django and django-ca provides some of its own settings.

From Djangos settings, you especially need to configure DATABASES, SECRET_KEY, ALLOWED_HOSTS and
STATIC_ROOT.

All settings used by django-ca start with the CA_ prefix. Settings are also documented at ca/ca/
localsettings.py.example (view on git).

CA_CUSTOM_APPS Default: []

This setting is only used when you use django-ca as a standalone project to let you add custom apps to the
project, e.g. to add Signals.

The list gets appended to the standard INSTALLED_APPS setting. If you need more control, you can always
override that setting instead.

CA_DEFAULT_ECC_CURVE Default: "SECP256R1"

The default elliptic curve used for generating CA private keys when ECC is used.

CA_DEFAULT_EXPIRES Default: 730

The default time, in days, that any signed certificate expires.

CA_DEFAULT_PROFILE Default: webserver

The default profile to use.

CA_DEFAULT_SUBJECT Default: {}

The default subject to use. The keys of this dictionary are the valid fields in X509 certificate subjects. Example:

CA_DEFAULT_SUBJECT = {
'C': 'AT',
'ST': 'Vienna',
'L': 'Vienna',
'O': 'HTU Wien',
'OU': 'Fachschaft Informatik',

(continues on next page)

23

https://docs.djangoproject.com/en/dev/ref/settings/
https://github.com/mathiasertl/django-ca/blob/master/ca/ca/localsettings.py.example

django-ca Documentation, Release 1.10.0

(continued from previous page)

'emailAddress': 'user@example.com',
}

CA_DIGEST_ALGORITHM Default: "sha512"

The default digest algorithm used to sign certificates. You may want to use "sha256" for older (pre-2010)
clients. Note that this setting is also used by the init_ca command, so if you have any clients that do not
understand sha512 hashes, you should change this beforehand.

CA_DIR Default: "ca/files"

Where the root certificate is stored. The default is a files directory in the same location as your manage.py
file.

CA_NOTIFICATION_DAYS Default: [14, 7, 3, 1,]

Days before expiry that certificate watchers will receive notifications. By default, watchers will receive notifi-
cations 14, seven, three and one days before expiry.

CA_OCSP_URLS Default: {}

Configuration for OCSP responders. See Run a OCSP responder for more information.

CA_PROFILES Default: {}

Profiles determine the default values for the keyUsage, extendedKeyUsage x509 extensions. In short,
they determine how your certificate can be used, be it for server and/or client authentication, e-mail signing or
anything else. By default, django-ca provides these profiles:

Profile keyUsage extendedKeyUsage
client digitalSignature clientAuth
server digitalSignature, keyAgreement keyEncipherment clientAuth, serverAuth
web-
server

digitalSignature, keyAgreement keyEncipherment serverAuth

enduser dataEncipherment, digitalSignature, keyEncipher-
ment

clientAuth, emailProtection, codeSign-
ing

ocsp nonRepudiation, talSignature, keyEncipherment OCSPSigning

Further more,

• The keyUsage attribute is marked as critical.

• The extendedKeyUsage attribute is marked as non-critical.

This should be fine for most usecases. But you can use the CA_PROFILES setting to either update or disable
existing profiles or add new profiles that you like. For that, set CA_PROFILES to a dictionary with the keys
defining the profile name and the value being either:

• None to disable an existing profile.

• A dictionary defining the profile. If the name of the profile is an existing profile, the dictionary is updated,
so you can ommit a value to leave it as the default. The possible keys are:

24 Chapter 5. Custom settings

django-ca Documentation, Release 1.10.0

key Description
"keyUsage" The keyUsage X509 extension.
"extendedKeyUsage"The extendedKeyUsage X509 extension.
"desc" A human-readable description, shows up with “sing_cert -h” and in the webin-

terface profile selection.
"subject" The default subject to use. If ommited, CA_DEFAULT_SUBJECT is used.
"cn_in_san" If to include the CommonName in the subjectAltName by default. The default

value is True.

Here is a full example:

CA_PROFILES = {
'client': {

'desc': _('Nice description.'),
'keyUsage': {

'critical': True,
'value': [

'digitalSignature',
],

},
'extendedKeyUsage': {

'critical': False,
'value': [

'clientAuth',
],

},
'subject': {

'C': 'AT',
'L': 'Vienna',

}
},

We really don't like the "ocsp" profile, so we remove it.
'ocsp': None,

}

CA_PROVIDE_GENERIC_CRL Default: True

If set to False, django_ca.urls will not add a CRL view. See Use generic view to host a CRL for more
information.

This setting only has effect if you use django_ca as a full project or you include the django_ca.urlsmodule
somewhere in your URL configuration.

Usage:

25

django-ca Documentation, Release 1.10.0

26 Chapter 5. Custom settings

CHAPTER 6

Command-line interface

django-ca provides a complete command-line interface for all functionality. It is implemented as subcommands
of Djangos manage.py script. You can use it for all certificate management operations, and Certificate authority
management is only possible via the command-line interface for security reasons.

In general, run manage.py without any parameters for available subcommands:

$ python manage.py

...
[django_ca]

cert_watchers
dump_cert
dump_crl
...

Creating Certificate Authorities and managing Certificates is documented on individual pages:

6.1 Certificate authority management

django-ca supports managing multiple certificate authorities as well as child certificate authorities.

The command-line interface is the only way to create certificate authorities. It is obviously most important that the
private keys are never exposed to any attacker, and any web interface would pose an unnecessary risk. Some details,
like the x509 extensions used for signing certificates, can be configured using the web interface.

For the same reason, the private key of a certificate authority is stored on the filesystem and not in the database. The
initial location of the private key is configured by the CA_DIR setting. This also means that you can run your django-
ca on two hosts, where one host has the private key and only uses the command line, and one with the webinterface
that can still be used to revoke certificates.

27

django-ca Documentation, Release 1.10.0

6.1.1 Index of commands

To manage certificate authorities, use the following manage.py commands:

Command Description
dump_ca Write the CA certificate to a file.
edit_ca Edit a certificate authority.
import_ca Import an existing certificate authority.
init_ca Create a new certificate authority.
list_cas List all currently configured certificate authorities.
view_ca View details of a certificate authority.

Like all manage.py subcommands, you can run manage.py <subcomand> -h to get a list of availabble parame-
ters.

6.1.2 Create a new CA

You should be very careful when creating a new certificate authority, especially if it is used by a large number of
clients. If you make a mistake here, it could make your CA unusable and you have to redistribute new public keys to
all clients, which is usually a lot of work.

Please think carefully about how you want to run your CA: Do you want intermediate CAs? Do you want to use CRLs
and/or run an OCSP responder?

pathlen attribute

The pathlen attribute says how many levels of intermediate CAs can be used below a given CA. If present, it is
an integer attribute (>= 0) meaning how many intermediate CAs can be below this CA. If not present, the number
is unlimited. For a valid setup, all pathlen attributes of all intermediate CAs must be correct. Here is a typical
(correct) example:

root # pathlen: 2
|- child_A # pathlen 1

|- child_A.1 # pathlen 0
|- child_B # pathlen 0

In this example, root and child_A can have intermediate CAs, while child_B and child_A.1 can not.

The default value for the pathlen attribute is 0, meaning that any CA cannot have any intermediate CAs. You can
use the --pathlen parameter to set a different value or the --no-pathlen parameter if you don’t want to set the
attribute:

Two sublevels of intermediate CAs:
python manage.py init_ca --pathlen=2 ...

unlimited number of intermediate CAs:
python manage.py init_ca --no-pathlen ...

CRL URLs

Certificate Revocation Lists (CRLs) are signed files that contain a list of all revoked certificates. Certificates (including
those for CAs) can contain pointers to CRLs, usually a single URL, in the crlDistributionPoints extension.
Clients that support this extension can query the URL and refuse to establish a connection if the certificate is revoked.

28 Chapter 6. Command-line interface

django-ca Documentation, Release 1.10.0

Since a CRL has to be signed by the issuing CA, root CAs cannot sensibly contain a CRL: You could only revoke the
root CA with it, and it would have to be signed by the (compromised) root CA.

django-ca supports adding CRLs to (intermediate) CAs as well as end-user certificates. The former cannot be changed
later, while the latter can be changed at any time for future certificates using the edit_ca subcommand or via the
web interface.

Warning: If you decide to add a CRL to CAs/certificates, you must also provide the CRLs at the given URL.
django-ca provides everything you need, please see Host a Certificate Revocation List (CRL) for more information.

For certificates to be signed by this CA, use the --crl-url option:

python manage.py init_ca --ca-url http://ca.example.com/example.crl ...

To add a CRL url for an intermediate CA, use the --ca-crl-url option:

python manage.py init_ca \
--parent root
--ca-url http://ca.example.com/root.crl
...

OCSP responder

The Online Certificate Status Protocol or OCSP is a service (called “OCSP responder”) run by a certificate authority
that allows clients to query for revoked certificates. It is an improvement over CRLs particulary for larger CAs because
a full CRL can grow quite big.

The same restrictions as for CRLs apply: You cannot add a OCSP URL to a root CA, it runs via HTTP (not HTTPS)
and if you decide to add such URLs, you also have to actually run that service, or clients will refuse to connect.
django-ca includes a somewhat tested OCSP responder, see Run a OCSP responder for more information.

To add a OCSP URL to certificates to be signed by this CA, use the --ocsp-url option:

python manage.py --ocsp-url http://ocsp.ca.example.com/example ...

To add a OCSP URL to intermediate CAs, use the --ca-ocsp-url option:

python manage.py init_ca \
--parent root \
--ca-ocsp-url http://ocsp.ca.example.com/root \
...

Name constraints

NameConstraints are a little-used extension (see RFC 5280, section 4.2.1.10 that allows you to create CAs that are
limited to issuing certificates for a particular set of addresses. The parsing of this syntax is quite complex, see e.g. this
blog post for a good explanation.

Warning: This extension is marked as “critical”. Any client that does not understand this extension will refuse a
connection.

6.1. Certificate authority management 29

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol
https://tools.ietf.org/html/rfc5280#section-4.2.1.10
https://www.sysadmins.lv/blog-en/x509-name-constraints-certificate-extension-all-you-should-know.aspx
https://www.sysadmins.lv/blog-en/x509-name-constraints-certificate-extension-all-you-should-know.aspx

django-ca Documentation, Release 1.10.0

To add name constraints to a CA, use the --name-constraint option, which can be given multiple times. Val-
ues are any valid name, see Names on the command-line for detailed documentation. Prefix the value with either
permitted, or excluded, to add them to the Permitted or Excluded subtree:

python manage.py init_ca \
--name-constraint permitted,DNS:com
--name-constraint permitted,DNS:net
--name-constraint excluded,DNS:evil.com
...

This will restrict the CA to issuing certificates for .com and .net subdomains, except for evil.com, which obviously
should never have a certificate (evil.net is good, though).

Examples

Here is a shell session that illustrates the respective manage.py commands:

$ python manage.py init_ca --pathlen=2
> --crl-url=http://ca.example.com/crl \
> --ocsp-url=http://ocsp.ca.example.com \
> --issuer-url=http://ca.example.com/ca.crt \
> TestCA /C=AT/L=Vienna/L=Vienna/O=Example/OU=ExampleUnit/CN=ca.example.com
$ python manage.py list_cas
BD:5B:AB:5B:A2:1C:49:0D:9A:B2:AA:BC:68:ED:ED:7D - TestCA

$ python manage.py view_ca BD:5B:AB:5B:A2
...

* OCSP URL: http://ocsp.ca.example.com
$ python manage.py edit_ca --ocsp-url=http://new-ocsp.ca.example.com \
> BD:5B:AB:5B:A2
$ python manage.py view_ca BD:5B:AB:5B:A2
...

* OCSP URL: http://new-ocsp.ca.example.com

Note that you can just use the start of a serial to identify the CA, as long as that still uniquely identifies the CA.

6.1.3 Create intermediate CAs

Intermediate CAs are created, just like normal CAs, using manage.py init_ca. For intermediate CAs to be valid,
CAs however must have a correct pathlen x509 extension. Its value is an integer describing how many levels of
intermediate CAs a CA may have. A pathlen of “0” means that a CA cannot have any intermediate CAs, if it is not
present, a CA may have an infinite number of intermediate CAs.

Note: django-ca by default sets a pathlen of “0”, as it aims to be secure by default. The pathlen attribute cannot
be changed in hindsight (not without resigning the CA). If you plan to create intermediate CAs, you have to consider
this when creating the root CA.

So for example, if you want two levels of intermediate CAs, , you’d need the following pathlen values (the
pathlen value is the minimum value, it could always be a larger number):

30 Chapter 6. Command-line interface

django-ca Documentation, Release 1.10.0

index CA pathlen description
1 example.com 2 Your root CA.
2 sub1.example.com 1 Your first intermediate CA, a sub-CA from (1).
3 sub2.example.com 0 A second intermediate CA, also a sub-CA from (1).
4 sub.sub1.example.com 0 An intermediate CA of (2).

If in the above example, CA (1) had pathlen of “1” or CA (2) had a pathlen of “0”, CA (4) would no longer be
a valid CA.

By default, django-ca sets a pathlen of 0, so CAs will not be able to have any intermediate CAs. You can configure
the value by passing --pathlen to init_ca:

$ python manage.py init_ca --pathlen=2 ...

When creating a sub-ca, you must name its parent using the --parent parameter:

$ python manage.py list_cas
BD:5B:AB:5B:A2:1C:49:0D:9A:B2:AA:BC:68:ED:ED:7D - Root CA
$ python manage.py init_ca --parent=BD:5B:AB:5B ...

Note: Just like throughout the system, you can always just give the start of the serial, as long as it still is a unique
identifier for the CA.

6.2 Managing certificates

All certificate operations can be done via the command line. You do not have to use this interface, all functionality is
also available via the Web interface, if it has access to the private key of the certificate authority.

6.2.1 Index of commands

To manage certificate, use the following manage.py commands:

Command Description
cert_watchers Add/remove addresses to be notified of an expiring certificate.
dump_cert Dump a certificate to a file.
import_cert Import an existing certificate.
list_certs List all certificates.
notify_expiring_certs Send notifications about expiring certificates to watchers.
revoke_cert Revoke a certificate.
sign_cert Sign a certificate.
view_cert View a certificate.

Like all manage.py subcommands, you can run manage.py <subcomand> -h to get a list of availabble parame-
ters.

6.2. Managing certificates 31

django-ca Documentation, Release 1.10.0

6.2.2 Signing certificates

Signing certificates is done using manage.py sign_cert. The only requirements are that you provide either a
full subject and/or one or more subjectAltNames. Obviously, you also need to create at least one certificate authority
first (documentation).

Like any good certificate authority, django-ca never handles private keys of signed certificates. Instead, you sign
certificates from a Certificate Signing Request (CSR) that you generate from the private key. Using the OpenSSL
command-line tools, you can create a CSR on the host that should use the certificate:

$ openssl genrsa -out example.key 4096
$ openssl req -new -key example.key -out example.csr -utf8

Next, simply copy the CSR file (example.csr in the above example) to the host where you installed django-ca.
You can now create a signed certificate using:

$ python manage.py sign_cert --alt example.com --csr example.csr --out example.pub

If you have defined multiple CAs, you also have to name the CA:

$ python manage.py list_cas
4E:1E:2A:29:F9:4C:45:CF:12:2F:2B:17:9E:BF:D4:80:29:C6:37:C7 - Root CA
32:BE:A9:E8:7E:21:BF:3E:E9:A1:F3:F9:E4:06:14:B4:C4:9D:B2:6C - Child CA
$ python manage.py sign_cert --ca 32:BE:A9 --alt example.com --csr example.csr --out
→˓example.pub

Subject and subjectAltName

The Certificate’s Subject (that is, it’s CommonName) and the names given in the subjectAltName extension define
where the certificate is valid.

The CommonName is usually added to the subjectAltName extension as well and vice versa. This means that
these two will give the same CommonName and subjectAltName:

$ python manage.py sign_cert --subject /C=AT/.../CN=example.com
$ python manage.py sign_cert --alt example.com

A given CommonName is only added as subjectAltName if it is a valid name. If you give multiple names via
--alt but no CommonName, the first one will be used as CommonName. Names passed via alt are parsed as
names, so you can also use e.g.:

$ python manage.py sign_cert --alt IP:127.0.0.1

You can also disable adding the CommonName as subjectAltName:

$ python manage.py sign_cert --cn-not-in-san --subject /C=AT/.../CN=example.com --
→˓alt=example.net

. . . this will only have “example.net” but not example.com as subjectAltName.

Using profiles

Certificates have extensions that define certain aspects of how/why/where/when a certificate can be used. Some exten-
sions are added based on how the Certificate Authority is configured, e.g. CRL/OCSP URLs. Extensions that define
for what purposes are a certificate can be used can be configured on a per-certificate basis.

32 Chapter 6. Command-line interface

django-ca Documentation, Release 1.10.0

The easiest way is to use profiles that define what extensions are added to any certificate. django-ca adds these
predefined profiles:

Name Purpose
client Allows the certificate to be used on the client-side of a TLS connection.
server Allows the certificate to be used on the client- and server-side of a connections.
enduser Allows client authentication and code and email signing.
webserver Allows only the server-side of a TLS connection, it can’t be used as a client certificate.
ocsp Allows the certificate to be used for signing OCSP responses.

You can add and modify profiles using the CA_PROFILES setting. The default profile is configured by the
CA_DEFAULT_PROFILE setting.

Override extensions

You can override some extensions using command-line parameters. Currently, this includes keyUsage,
extendedKeyUsage and TLSFeature. In every case, prefixing the value with critical marks the exten-
sion as critical (meaning a TLS client that does not understand the extension will reject the connection):

$ python manage.py sign_cert \
--key-usage critical,keyCertSign \
--ext-key-usage serverAuth,clientAuth \
--tls-feature OCSPMustStaple \
...

For more information on these extensions, their meaning and typical values, see x509 extensions.

6.2.3 Revoke certificates

To revoke a certificate, use:

$ python manage.py list_certs
49:BC:F2:FE:FA:31:03:B6:E0:CC:3D:16:93:4E:2D:B0:8A:D2:C5:87 - localhost (expires:
→˓2019-04-18)
...
$ python manage.py revoke_cert
→˓49:BC:F2:FE:FA:31:03:B6:E0:CC:3D:16:93:4E:2D:B0:8A:D2:C5:87

6.2.4 Expiring certificates

You can add email addresses to be notified of expiring certificates using the --watch parameter:

$ python manage.py --sign-cert --watch user@example.com --watch user@example.net ...

Or modify to add/remove watchers later:

$ python manage.py list_certs
49:BC:F2:FE:FA:31:03:B6:E0:CC:3D:16:93:4E:2D:B0:8A:D2:C5:87 - localhost (expires:
→˓2019-04-18)
...
$ python manage.py cert_watchers -a add@example.com -r user@example.net 49:BC:F2

6.2. Managing certificates 33

django-ca Documentation, Release 1.10.0

Note: Consider creating a bash script to easily access your manage.py script.

6.3 Index of existing commands

manage.py subcommands for certificate authority management:

Command Description
dump_ca Write the CA certificate to a file.
edit_ca Edit an existing certificate authority.
import_ca Import an existing certificate authority.
init_ca Create a new certificate authority.
list_cas List currently configured certificate authorities.
view_ca View details of a certificate authority.

manage.py subcommands for certificate management:

Command Description
cert_watchers Add/remove addresses to be notified of an expiring certificate.
dump_cert Dump a certificate to a file.
import_cert Import an existing certificate.
list_certs List all certificates.
notify_expiring_certs Send notifications about expiring certificates to watchers.
revoke_cert Revoke a certificate.
sign_cert Sign a certificate.
view_cert View a certificate.

Miscellaneous manage.py subcommands:

Command Description
dump_crl Write the certificate revocation list (CRL), see Host a Certificate Revocation List (CRL).
dump_ocsp_index Write an OCSP index file, see Run a OCSP responder.

6.4 Names on the command-line

The most common use case for certificates is to issue certificates for domains. For example, a certificate for “exam-
ple.com” is valid for exactly that domain and no other. But certificates can be valid for various other names as well,
e.g. email addresses or URLs. Those names also occur in other places, like in the Name constraints extension for CAs.

On the command-line, django-ca will do its best to guess what you want. This example would issue a certificate valid
for one domain and and one email address:

$ python manage.py sign_cert --alt example.com --alt user@example.net ...

If the name you’re giving might be ambigious or you just want to make sure that the value is interpreted correctly, you
can always use a prefix to force a particular type. This is equivalent to the above example:

34 Chapter 6. Command-line interface

django-ca Documentation, Release 1.10.0

$ python manage.py sign_cert --alt DNS:example.com --alt email:user@example.net ...

Valid prefixes right now are:

Prefix Meaning
DNS A DNS name, the most common use case.
email An email address (e.g. used when using S/MIME to sign emails).
dirname An LDAP-style directory name, e.g. “/C=AT/L=Vienna/CN=example.at”.
URI A URI, e.g. https://example.com.
IP An IP address, both IPv4 and IPv6 are supported.
RID A “Registered ID”. No real-world examples are known, you’re on your own.
otherName Anything not covered in the above values. Same restrictions as for RID apply.

6.4.1 Wildcard names

In some cases you might want to use a wildcard in DNS names. The most common use cases are “wildcard certifi-
cates”, which are valid for all given subdomains. Creating such certificates is simple:

$ python manage.py sign_cert --alt *.example.com ...

6.4.2 IP addresses

Both IPv4 and IPv6 addresses are supported, e.g. this certificate is valid for localhost on both IPv4 and IPv6:

python manage.py sign_cert --alt ::1 --alt 127.0.0.1 ...

6.4. Names on the command-line 35

https://example.com

django-ca Documentation, Release 1.10.0

36 Chapter 6. Command-line interface

CHAPTER 7

Web interface

The web interface allows you to perform the most common tasks necessary when running certificate authority. It is
implemented using Djangos admin interface. You can:

• Issue and revoke certificates.

• Modify the x509 extensions used when signing certificates.

• Modify who is notified about expiring certificates.

The django project in the git repository (e.g. if you installed django-ca as a standalone project) already enables the
admin interface and it’s usable as soon as you enabled the webserver (tip: Create a user for login using manage.py
createsuperuser). If you installed django-ca as an app, the admin interface is automatically included.

37

django-ca Documentation, Release 1.10.0

38 Chapter 7. Web interface

CHAPTER 8

Host a Certificate Revocation List (CRL)

A Certificate Revocation List (CRL) contains all revoked certificates signed by a certificate authority. Having a CRL
is completely optional (e.g. Let’s Encrypt certificates don’t have one).

A URL to the CRL is usually included in the certificates (in the crlDistributionPoints x509 extension) so
clients can fetch the CRL and verify that the certificate has not been revoked. Some services (e.g. OpenVPN) also just
keep a local copy of a CRL.

Note: CRLs are usually hosted via HTTP, not HTTPS. CRLs are always signed, so hosting them via HTTP is not
a security vulnerability. Further, you cannot verify the the certificate used when fetching the CRL anyway, since you
would need the CRL for that.

8.1 Add CRL URL to new certificates

To include the URL to a CRL in newly issued certificates (you cannot add it to already issued certificates, obviously),
either set it in the admin interface or via the command line:

$ python manage.py list_cas
34:D6:02:B5:B8:27:4F:51:9A:16:0C:B8:56:B7:79:3F - Root CA
$ python manage.py edit_ca --crl-url=http://ca.example.com/crl.pem \
> 34:D6:02:B5:B8:27:4F:51:9A:16:0C:B8:56:B7:79:3F

8.2 Use generic view to host a CRL

django-ca provides the generic view CertificateRevocationListView to provide CRLs via HTTP.

If you installed django-ca as a full project, a default CRL is already available for all CAs. If you installed django-ca
on “ca.example.com”, the CRL is available at http://ca.example.com/django_ca/crl/<serial>/. If

39

https://letsencrypt.org/

django-ca Documentation, Release 1.10.0

you installed django-ca as an app, you only need to include django_ca.urls in your URL conf at the appropriate
location.

The default CRL is in the ASN1/DER format, signed with sha512 and refreshed every ten minutes. This is fine for
TLS clients that use CRLs and is in fact similar to what public CAs use (see crlDistributionPoints). If you want to
change any of these settings, you can override them as parameters in a URL conf:

from OpenSSL import crypto
from django_ca.views import CertificateRevocationListView

urlpatterns = [
... your other patterns

We need a CRL in PEM format with a sha256 digest
url(r'^crl/(?P<serial>[0-9A-F:]+)/$',

CertificateRevocationListView.as_view(
type=crypto.FILETYPE_PEM,
digest='sha256',
content_type='text/plain',

),
name='sha256-crl')),

]

If you do not want to include the automatically hosted CRL, please set CA_PROVIDE_GENERIC_CRL to False in
your settings.

class django_ca.views.CertificateRevocationListView(**kwargs)
Generic view that provides Certificate Revocation Lists (CRLs).

ca_crl = False
If set to True, return a CRL for child CAs instead.

content_type = None
Value of the Content-Type header used in the response. For CRLs in PEM format, use text/plain.

digest = <cryptography.hazmat.primitives.hashes.SHA512 object>
Digest used for generating the CRL.

expires = 600
CRL expires in this many seconds.

password = None
Password used to load the private key of the certificate authority. If not set, the private key is assumed to
be unencrypted.

type = 'DER'
Filetype for CRL.

8.3 Write a CRL to a file

You can generate the CRL with the manage.py dump_crl command:

$ python manage.py dump_crl -f PEM /var/www/crl.pem

Note: The dump_crl command uses the first enabled CA by default, you can force a particular CA with
--ca=<serial>.

40 Chapter 8. Host a Certificate Revocation List (CRL)

django-ca Documentation, Release 1.10.0

CRLs expire after a certain time (default: one day, configure with --expires=SECS), so you must periodically
regenerate it, e.g. via a cron-job.

How and where to host the file is entirely up to you. If you run a Django project with a webserver already, one
possibility is to dump it to your MEDIA_ROOT directory.

8.3. Write a CRL to a file 41

django-ca Documentation, Release 1.10.0

42 Chapter 8. Host a Certificate Revocation List (CRL)

CHAPTER 9

Run a OCSP responder

OCSP, or the Online Certificate Status Protocol provides a second method (besides CRLs) for a client to find out if a
certificate has been revoked.

9.1 Configure OCSP with django-ca

django-ca provides generic HTTP endpoints for an OCSP service for your certificate authorities. The setup involves:

1. Creating a responder certificate

2. Configure generic views

3. Add a OCSP URL to the new certificate

New in version 1.2: Before version 1.2, django-ca was not able to host its own OCSP responder.

9.1.1 Create an OCSP responser certificate

To run an OCSP responder, you first need a certificate with some special properties. Luckily, django-ca has a profile
predefined for you:

$ openssl genrsa -out ocsp.key 4096
$ openssl req -new -key ocsp.key -out ocsp.csr -utf8 -batch
$ python manage.py sign_cert --csr=ocsp.csr --out=ocsp.pem \
> --subject /CN=ocsp.example.com --ocsp

Warning: The CommonName in the certificates subject must match the domain where you host your django-ca
installation.

43

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol

django-ca Documentation, Release 1.10.0

9.1.2 Configure generic views

The final step in configuring an OCSP responder for the CA is configuring the HTTP endpoint. If you’ve installed
django-ca as a full project or include django_ca.urls in your root URL config, configure the CA_OCSP_URLS
setting. It’s a dictionary configuring instances of OCSPView . Keys become part of the URL pattern, the value is a
dictionary for the arguments of the view. For example:

CA_OCSP_URLS = {
'Root CA': {

'responder_key': '/usr/share/django-ca/ocsp.key',
'responder_cert': '/usr/share/django-ca/ocsp.pem',

optional: The name or serial of the CA. By default, the dictionary key (
→˓"Root CA" in

this example is assumed to be the CA name or serial.
#'ca': '34:D6:02:B5:B8:27:4F:51:9A:16:0C:B8:56:B7:79:3F',

optional: How long OCSP responses are valid
#'expires': 3600,

},

This URL can be added to any intermediate CA using the --ca-ocsp-url parameter
'Root CA - intermediate': {

Dictionary key is not the name of the root CA, so we pass a serial instead:
'ca': '34:D6:02:B5:B8:27:4F:51:9A:16:0C:B8:56:B7:79:3F',
'responder_key': '/usr/share/django-ca/ocsp.key',
'responder_cert': '/usr/share/django-ca/ocsp.pem',

optional: This URL serves OCSP responses for Child CAs, not signed enduser
→˓certs:

#'ca_ocsp': True,
}

}

This would mean that your OCSP responder would be located at /django_ca/ocsp/root/ at whatever domain
you have configured your WSGI daemon. If you’re using your own URL configuration, pass the same parameters to
the as_view() method.

class django_ca.views.OCSPView(**kwargs)
View to provide an OCSP responder.

See also:

This is heavily inspired by https://github.com/threema-ch/ocspresponder/blob/master/ocspresponder/__init__.
py.

ca = None
The name or serial of your Certificate Authority.

ca_ocsp = False
If set to True, validate child CAs instead.

expires = 600
Time in seconds that the responses remain valid. The default is 600 seconds or ten minutes.

responder_cert = None
Absolute path to the public key used for signing OCSP responses. May also be a serial identifying a
certificate from the database.

44 Chapter 9. Run a OCSP responder

https://github.com/threema-ch/ocspresponder/blob/master/ocspresponder/__init__.py
https://github.com/threema-ch/ocspresponder/blob/master/ocspresponder/__init__.py

django-ca Documentation, Release 1.10.0

responder_key = None
Absolute path to the private key used for signing OCSP responses.

9.1.3 Add OCSP URL to new certificates

To include the URL to an OCSP service to newly issued certificates (you cannot add it to already issued certificates,
obviously), either set it in the admin interface or via the command line:

$ python manage.py list_cas
34:D6:02:B5:B8:27:4F:51:9A:16:0C:B8:56:B7:79:3F - Root CA
$ python manage.py edit_ca --ocsp-url=http://ocsp.example.com/ \
> 34:D6:02:B5:B8:27:4F:51:9A:16:0C:B8:56:B7:79:3F

9.2 Run an OCSP responser with openssl ocsp

OpenSSL ships with the openssl ocsp command that allows you to run an OCSP responser, but note that the
manpage says “only useful for test and demonstration purposes”.

To use the command, generate an index:

$ python manage.py dump_ocsp_index ocsp.index

OpenSSL itself allows you to run an OCSP responder with this command:

$ openssl ocsp -index ocsp.index -port 8888 -rsigner ocsp.pem \
> -rkey ocsp.example.com.key -CA files/ca.crt -text

Python API:

9.2. Run an OCSP responser with openssl ocsp 45

django-ca Documentation, Release 1.10.0

46 Chapter 9. Run a OCSP responder

CHAPTER 10

Python API

django-ca provides a Python API for everyone that wants to extend the functionality or build your own solution on
top.

Note: This project is developed using Python and Django. Using the Python API requires knowledge in both. If you
need help, both projects provide excellend documentation.

10.1 General

django-ca is a standard Django App. Using it requires a basic Django environment. You do not have to provide any
special settings, default settings should be fine.

If you plan on using this project in standalone scripts, Django has some hints to get you started. But note that you still
have to configure all of the basic Django settings and there is virtually no functionality without a database.

In some environments, e.g. where django-ca is exclusively used with commandline scripts, it might we worth it to
use the default SQLite database backend.

10.2 Certificate Authorities

Certificate Authorities are represented by the CertificateAuthority model. It is a standard Django model,
which means you can use the QuerySet API to retrieve and manipulate CAs:

>>> from django_ca.models import CertificateAuthority
>>> ca = CertificateAuthority.objects.get(serial='...')
>>> ca.enabled = False
>>> ca.save()

To create a new CA, you have to init(), this example creates a minimal CA:

47

https://www.python.org/
https://www.djangoproject.com/
https://docs.djangoproject.com/en/dev/ref/applications/
https://docs.djangoproject.com/en/dev/topics/settings/#settings-without-django-settings-module
https://docs.djangoproject.com/en/dev/ref/models/querysets/

django-ca Documentation, Release 1.10.0

>>> from django_ca.models import CertificateAuthority
>>> from django_ca.subject import Subject
>>> from datetime import datetime
>>> ca = CertificateAuthority.objects.init(
... name='A new CA', subject=Subject('/CN=ca.example.com'), key_size=2048)

Please refer to the autogenerated documentation for CertificateAuthority and
CertificateAuthorityManager for a detailed list of models.

10.3 Certificates

Certificates are represented by the Certificate model, they too are a standard Django model:

>>> from django_ca.models import Certificate
>>> cert = Certificate.objects.get(serial='...')
>>> cert.revoke() # this already calls save()

Much like with certificate authorities, creating a new certificate requires a management method:

>>> from django_ca.models import Certificate
>>> cert = Certificate.objects.init(ca, csr, ...)

10.4 Subjects and Extensions

django-ca provides a set of convenience classes to allow you to handle subjects and extensions for certificates more
easily. These classes are easy to instantiate and provide convenient access methods:

• django_ca.subject.Subject handles x509 subjects, e.g. as used in a certificate subject.

• django_ca.extensions is a module that includes various classes that represent x509 extensions.

10.5 Signals

Signals are a way for a developer to execute code whenever an event happens, for example to send out an email
whenever a new certificate is issued. django-ca provides some custom signals.

48 Chapter 10. Python API

CHAPTER 11

Signals

django-ca adds a few custom Django signals to important events to let you execute custom actions when these events
happen. Please see Djangos documentation on signals for further information on how to use signals.

If you use django-ca as standalone project, use the CA_CUSTOM_APPS setting to add a custom django app. Please
see the Django documentation on apps if you need help on writing Django apps.

django_ca.signals.post_create_ca = <django.dispatch.dispatcher.Signal object>
Called after a new certificate authority was created.

Parameters

ca [CertificateAuthority] The certificate authority that was just created.

django_ca.signals.post_issue_cert = <django.dispatch.dispatcher.Signal object>
Called after a new certificate was issued.

Parameters

cert [Certificate] The certificate that was just issued.

django_ca.signals.post_revoke_cert = <django.dispatch.dispatcher.Signal object>
Called after a certificate was revoked

Parameters

cert [Certificate] The certificate that was just revoked.

django_ca.signals.pre_create_ca = <django.dispatch.dispatcher.Signal object>
Called before a new certificate authority is created.

Parameters

name [str] The name of the future CA.

**kwargs

django_ca.signals.pre_issue_cert = <django.dispatch.dispatcher.Signal object>
Called before a new certificate is issued.

Parameters

49

https://docs.djangoproject.com/en/dev/ref/signals/
https://docs.djangoproject.com/en/dev/ref/applications/

django-ca Documentation, Release 1.10.0

ca

csr

**kwargs

django_ca.signals.pre_revoke_cert = <django.dispatch.dispatcher.Signal object>
Called before a certificate is revoked.

Parameters

ca

csr

**kwargs

50 Chapter 11. Signals

CHAPTER 12

django_ca.extensions - X509 extensions

class django_ca.extensions.Extension(value)
Convenience class to handle X509 Extensions.

The class is designed to take whatever format an extension might occur, essentially providing a convertible
format for extensions that is used in many places throughout the code. It accepts str if e.g. the value was
received from the commandline:

>>> KeyUsage('keyAgreement,keyEncipherment')
<KeyUsage: ['keyAgreement', 'keyEncipherment'], critical=False>
>>> KeyUsage('critical,keyAgreement,keyEncipherment')
<KeyUsage: ['keyAgreement', 'keyEncipherment'], critical=True>

It also accepts a list/tuple of two elements, the first being the “critical” flag, the second being a value (e.g.
from a MultiValueField from a form):

>>> KeyUsage((False, ['keyAgreement', 'keyEncipherment']))
<KeyUsage: ['keyAgreement', 'keyEncipherment'], critical=False>
>>> KeyUsage((True, ['keyAgreement', 'keyEncipherment']))
<KeyUsage: ['keyAgreement', 'keyEncipherment'], critical=True>

Or it can be a dict as used by the CA_PROFILES setting:

>>> KeyUsage({'value': ['keyAgreement', 'keyEncipherment']})
<KeyUsage: ['keyAgreement', 'keyEncipherment'], critical=False>
>>> KeyUsage({'critical': True, 'value': ['keyAgreement', 'keyEncipherment']})
<KeyUsage: ['keyAgreement', 'keyEncipherment'], critical=True>

. . . and finally it can also use a subclass of ExtensionType from cryptography:

>>> from cryptography import x509
>>> ExtendedKeyUsage(x509.extensions.Extension(
... oid=ExtensionOID.EXTENDED_KEY_USAGE,
... critical=False,
... value=x509.ExtendedKeyUsage([ExtendedKeyUsageOID.SERVER_AUTH])

(continues on next page)

51

https://cryptography.io/en/latest/x509/reference/#cryptography.x509.ExtensionType

django-ca Documentation, Release 1.10.0

(continued from previous page)

...))
<ExtendedKeyUsage: ['serverAuth'], critical=False>

Parameters

value [list or tuple or dict or str or ExtensionType] The value of the extension, the descrip-
tion provides further details.

Attributes

name A human readable name of this extension.

value Raw value for this extension. The type various from subclass to subclass.

add_colons(s)
Add colons to a string.

TODO: duplicate from utils :-(

as_extension()
This extension as ExtensionType.

as_text()
Human-readable version of the value, not including the “critical” flag.

extension_type
The extension_type for this value.

for_builder()
Return kwargs suitable for a CertificateBuilder.

Example:

>>> kwargs = KeyUsage('keyAgreement,keyEncipherment').for_builder()
>>> builder.add_extension(**kwargs)

name
A human readable name of this extension.

class django_ca.extensions.KeyIdExtension(value)
Bases: django_ca.extensions.Extension

Base class for extensions that contain a KeyID as value.

class django_ca.extensions.MultiValueExtension(value)
Bases: django_ca.extensions.Extension

A generic base class for extensions that have multiple values.

Instances of this class have a len() and can be used with the in operator:

>>> ku = KeyUsage((False, ['keyAgreement', 'keyEncipherment']))
>>> 'keyAgreement' in ku
True
>>> len(ku)
2

Known values are set in the KNOWN_VALUES attribute for each class. The constructor will raise ValueError
if an unknown value is passed.

52 Chapter 12. django_ca.extensions - X509 extensions

https://cryptography.io/en/latest/x509/reference/#cryptography.x509.ExtensionType
https://cryptography.io/en/latest/x509/reference/#cryptography.x509.ExtensionType
https://cryptography.io/en/latest/x509/reference/#cryptography.x509.CertificateBuilder

django-ca Documentation, Release 1.10.0

12.1 Concrete extensions

class django_ca.extensions.AuthorityKeyIdentifier(value)
Bases: django_ca.extensions.KeyIdExtension

Class representing a AuthorityKeyIdentifier extension.

class django_ca.extensions.ExtendedKeyUsage(value)
Bases: django_ca.extensions.MultiValueExtension

Class representing a ExtendedKeyUsage extension.

KNOWN_VALUES = {'OCSPSigning', 'clientAuth', 'codeSigning', 'emailProtection', 'msKDC', 'serverAuth', 'smartcardLogon', 'timeStamping'}
Known values for this extension.

class django_ca.extensions.KeyUsage(*args, **kwargs)
Bases: django_ca.extensions.MultiValueExtension

Class representing a KeyUsage extension.

KNOWN_VALUES = {'cRLSign', 'dataEncipherment', 'decipherOnly', 'digitalSignature', 'encipherOnly', 'keyAgreement', 'keyCertSign', 'keyEncipherment', 'nonRepudiation'}
Known values for this extension.

class django_ca.extensions.SubjectKeyIdentifier(value)
Bases: django_ca.extensions.KeyIdExtension

Class representing a SubjectKeyIdentifier extension.

class django_ca.extensions.TLSFeature(value)
Bases: django_ca.extensions.MultiValueExtension

Class representing a TLSFeature extension.

KNOWN_VALUES = {'MultipleCertStatusRequest', 'OCSPMustStaple'}
Known values for this extension.

12.1. Concrete extensions 53

django-ca Documentation, Release 1.10.0

54 Chapter 12. django_ca.extensions - X509 extensions

CHAPTER 13

django_ca.models - django-ca models

Note that both CertificateAuthority and Certificate inherit from X509CertMixin, which provides
many convenience methods.

13.1 CertificateAuthority

class django_ca.models.CertificateAuthority(id, created, expires, pub, cn, serial, re-
voked, revoked_date, revoked_reason, name,
enabled, parent, private_key_path, crl_url,
issuer_url, ocsp_url, issuer_alt_name)

allows_intermediate_ca
Wether this CA allows creating intermediate CAs.

bundle
A list of any parent CAs, including this CA.

The list is ordered so the Root CA will be the first.

max_pathlen
The maximum pathlen for any intermediate CAs signed by this CA.

This value is either None, if this and all parent CAs don’t have a pathlen attribute, or an int if any
parent CA has the attribute.

name
Human-readable name of the CA, only used for displaying the CA.

pathlen
The pathlen attribute of the BasicConstraints extension (either an int or None).

13.1.1 Manager methods

CertificateAuthorityManager is the default manager for CertificateAuthority , meaning you can

55

django-ca Documentation, Release 1.10.0

access it using CertificateAuthority.objects, e.g.:

>>> from django_ca.models import CertificateAuthority
>>> CertificateAuthority.objects.init(...)

class django_ca.managers.CertificateAuthorityManager

init(name, subject, expires=None, algorithm=None, parent=None, pathlen=None, issuer_url=None,
issuer_alt_name=None, crl_url=None, ocsp_url=None, ca_issuer_url=None, ca_crl_url=None,
ca_ocsp_url=None, name_constraints=None, password=None, parent_password=None,
ecc_curve=None, key_type=’RSA’, key_size=None)

Create a new certificate authority.

Parameters

name [str] The name of the CA. This can be a human-readable string and is used for admin-
istrative purposes only.

algorithm [str or HashAlgorithm, optional] Hash algorithm used when signing the cer-
tificate. If a string is passed, it must be the name of one of the hashes in hashes, e.g.
"SHA512". This method also accepts instances of HashAlgorithm, e.g. SHA512.
The default is the CA_DIGEST_ALGORITHM setting.

subject [Subject] Subject string, e.g. Subject("/CN=example.com").

expires [datetime, optional] Datetime for when this certificate authority will expire, defaults
to the CA_DEFAULT_EXPIRES setting.

parent [CertificateAuthority , optional] Parent certificate authority for the new
CA. This means that this CA will be an intermediate authority.

pathlen [int, optional]

password [bytes, optional] Password to encrypt the private key with.

parent_password [bytes, optional] Password that the private key of the parent CA is en-
crypted with.

ecc_curve [str or EllipticCurve, optional] The elliptic curve to use for ECC type keys, passed
verbatim to parse_key_curve().

key_type: str, optional The type of private key to generate, must be one of "RSA", "DSA"
or "ECC", with "RSA" being the default.

key_size [int, optional] Integer specifying the key size, must be a power of two (e.g. 2048,
4096, . . .) unused if key_type="ECC" but required otherwise.

Raises

ValueError For various cases of wrong input data (e.g. key_size not being the power of
two).

PermissionError If the private key file cannot be written to disk.

13.2 Certificate

class django_ca.models.Certificate(id, created, expires, pub, cn, serial, revoked, revoked_date,
revoked_reason, ca, csr)

56 Chapter 13. django_ca.models - django-ca models

https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.HashAlgorithm
https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#module-cryptography.hazmat.primitives.hashes
https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.HashAlgorithm
https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.SHA512

django-ca Documentation, Release 1.10.0

bundle
The complete certificate bundle. This includes all CAs as well as the certificates itself.

13.2.1 Manager methods

CertificateManager is the default manager for Certificate, meaning you can access it using
Certificate.objects, e.g.:

>>> from django_ca.models import Certificate
>>> Certificate.objects.init(...)

class django_ca.managers.CertificateManager

init(ca, csr, **kwargs)
Create a signed certificate from a CSR and store it to the database.

All parameters are passed on to Certificate.objects.sign_cert().

sign_cert(ca, csr, expires=None, algorithm=None, subject=None, cn_in_san=True,
csr_format=<Encoding.PEM: ’PEM’>, subjectAltName=None, key_usage=None,
extended_key_usage=None, tls_feature=None, password=None)

Create a signed certificate from a CSR.

PLEASE NOTE: This function creates the raw certificate and is usually not invoked directly. It is called
by Certificate.objects.init(), which passes along all parameters unchanged and saves the
raw certificate to the database.

Parameters

ca [CertificateAuthority] The certificate authority to sign the certificate with.

csr [str] A valid CSR. The format is given by the csr_format parameter.

expires [datetime, optional] Datetime for when this certificate will expire, defaults to the
CA_DEFAULT_EXPIRES setting.

algorithm [str or HashAlgorithm, optional] Hash algorithm used when signing the cer-
tificate. If a string is passed, it must be the name of one of the hashes in hashes, e.g.
"SHA512". This method also accepts instances of HashAlgorithm, e.g. SHA512.
The default is the CA_DIGEST_ALGORITHM setting.

subject [Subject, optional] The Subject to use in the certificate. If this value is not passed
or if the value does not contain a CommonName, the first value of the subjectAltName
parameter is used as CommonName.

cn_in_san [bool, optional] Wether the CommonName should also be included as subjectAl-
ternativeName. The default is True, but the parameter is ignored if no CommonName is
given. This is typically set to False when creating a client certificate, where the subjects
CommonName has no meaningful value as subjectAltName.

csr_format [Encoding, optional] The format of the CSR. The default is PEM.

subjectAltName [list of str, optional] A list of values for the subjectAltName extension.
Values are passed to parse_general_name(), see function documentation for how
this value is parsed.

key_usage [KeyUsage, optional] Value for the keyUsage X509 extension.

extended_key_usage [ExtendedKeyUsage, optional] Value for the
extendedKeyUsage X509 extension.

13.2. Certificate 57

https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.HashAlgorithm
https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#module-cryptography.hazmat.primitives.hashes
https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.HashAlgorithm
https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.SHA512
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/serialization/#cryptography.hazmat.primitives.serialization.Encoding

django-ca Documentation, Release 1.10.0

tls_feature [TLSFeature, optional] Value for the TLSFeature X509 extension.

password [bytes, optional] Password used to load the private key of the certificate authority.
If not passed, the private key is assumed to be unencrypted.

Returns

cryptography.x509.Certificate The signed certificate.

13.3 X509CertMixin

X509CertMixin is a common base class to both CertificateAuthority and Certificate and provides
many convenience attributes.

class django_ca.models.X509CertMixin(*args, **kwargs)

authority_key_identifier
The AuthorityKeyIdentifier extension, or None if it doesn’t exist.

extended_key_usage
The ExtendedKeyUsage extension, or None if it doesn’t exist.

issuer
The certificate issuer field as Subject.

key_usage
The KeyUsage extension, or None if it doesn’t exist.

not_after
Date/Time this certificate expires.

not_before
Date/Time this certificate was created

subject
The certificates subject as Subject.

subject_key_identifier
The SubjectKeyIdentifier extension, or None if it doesn’t exist.

tls_feature
The TLSFeature extension, or None if it doesn’t exist.

x509
The underlying cryptography.x509.Certificate.

58 Chapter 13. django_ca.models - django-ca models

https://cryptography.io/en/latest/x509/reference/#cryptography.x509.Certificate

CHAPTER 14

django_ca.subject - X509 Subject

class django_ca.subject.Subject(subject=None)
Convenience class to handle X509 Subjects.

This class accepts a variety of values and intelligently parses them:

>>> Subject('/CN=example.com')
Subject("/CN=example.com")
>>> Subject({'CN': 'example.com'})
Subject("/CN=example.com")
>>> Subject([('CN', 'example.com'),])
Subject("/CN=example.com")

In many respects, this class handles like a dict:

>>> s = Subject('/CN=example.com')
>>> 'CN' in s
True
>>> s.get('OU', 'Default OU')
'Default OU'
>>> s.setdefault('C', 'AT')
>>> s['C'], s['CN']
('AT', 'example.com')

fields
This subject as a list of NameOID instances.

>>> list(Subject('/C=AT/CN=example.com').fields) # doctest: +NORMALIZE_
→˓WHITESPACE
[(<ObjectIdentifier(oid=2.5.4.6, name=countryName)>, 'AT'),
(<ObjectIdentifier(oid=2.5.4.3, name=commonName)>, 'example.com')]

name
This subject as x509.Name.

59

https://cryptography.io/en/latest/x509/reference/#cryptography.x509.oid.NameOID
https://cryptography.io/en/latest/x509/reference/#cryptography.x509.Name

django-ca Documentation, Release 1.10.0

>>> Subject('/C=AT/CN=example.com').name # doctest: +NORMALIZE_WHITESPACE
<Name([<NameAttribute(oid=<ObjectIdentifier(oid=2.5.4.6, name=countryName)>,
→˓value='AT')>,

<NameAttribute(oid=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>,
→˓value='example.com')>])>

60 Chapter 14. django_ca.subject - X509 Subject

CHAPTER 15

django_ca.utils - utility functions

Central functions to load CA key and cert as PKey/X509 objects.

django_ca.utils.GENERAL_NAME_RE = re.compile('^(email|URI|IP|DNS|RID|dirName|otherName):(.*)', re.IGNORECASE)
Regular expression to match general names.

class django_ca.utils.LazyEncoder(skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, sort_keys=False, indent=None, separa-
tors=None, default=None)

Encoder that also encodes strings translated with ugettext_lazy.

django_ca.utils.NAME_RE = re.compile('(?:/+|\\A)\\s*(?P<field>[^\\s]*?)\\s*=(?P<quote>[\\\'"])?\\s*(?P<content>(?(quote).*?|[^/]*))\\s*(?(quote)(?<!\\\\)(?P=quote))', re.IGNORECASE)
Regular expression to match RDNs out of a full x509 name.

django_ca.utils.OID_NAME_MAPPINGS = {<ObjectIdentifier(oid=2.5.4.7, name=localityName)>: 'L', <ObjectIdentifier(oid=2.5.4.6, name=countryName)>: 'C', <ObjectIdentifier(oid=2.5.4.3, name=commonName)>: 'CN', <ObjectIdentifier(oid=1.2.840.113549.1.9.1, name=emailAddress)>: 'emailAddress', <ObjectIdentifier(oid=2.5.4.8, name=stateOrProvinceName)>: 'ST', <ObjectIdentifier(oid=2.5.4.11, name=organizationalUnitName)>: 'OU', <ObjectIdentifier(oid=2.5.4.10, name=organizationName)>: 'O'}
Map OID objects to IDs used in subject strings

django_ca.utils.add_colons(s)
Add colons after every second digit.

This function is used in functions to prettify serials.

>>> add_colons('teststring')
'te:st:st:ri:ng'

django_ca.utils.format_general_name(name)
Format a single general name.

>>> import ipaddress
>>> format_general_name(x509.DNSName('example.com'))
'DNS:example.com'
>>> format_general_name(x509.IPAddress(ipaddress.IPv4Address('127.0.0.1')))
'IP:127.0.0.1'

django_ca.utils.format_general_names(names)
Format a list of general names.

61

django-ca Documentation, Release 1.10.0

>>> import ipaddress
>>> format_general_names([x509.DNSName('example.com')])
'DNS:example.com'
>>> format_general_names([x509.IPAddress(ipaddress.IPv4Address('127.0.0.1'))])
'IP:127.0.0.1'
>>> format_general_names([x509.DirectoryName(
... x509.Name([x509.NameAttribute(x509.oid.NameOID.COMMON_NAME, 'example.com
→˓')]))])
'dirname:/CN=example.com'
>>> format_general_names([x509.DNSName('example.com'), x509.DNSName('example.net
→˓')])
'DNS:example.com, DNS:example.net'

django_ca.utils.format_name(subject)
Convert a subject into the canonical form for distinguished names.

This function does not take care of sorting the subject in any meaningful order.

Examples:

>>> format_name([('CN', 'example.com'),])
'/CN=example.com'
>>> format_name([('CN', 'example.com'), ('O', "My Organization"),])
'/CN=example.com/O=My Organization'

django_ca.utils.get_cert_builder(expires)
Get a basic X509 cert builder object.

Parameters

expires [datetime] When this certificate will expire.

django_ca.utils.get_cert_profile_kwargs(name=None)
Get kwargs suitable for get_cert X509 keyword arguments from the given profile.

django_ca.utils.get_default_subject(name)
Get the default subject for the given profile.

django_ca.utils.int_to_hex(i)
Create a hex-representation of the given serial.

>>> int_to_hex(12345678)
'BC:61:4E'

django_ca.utils.is_power2(num)
Return True if num is a power of 2.

>>> is_power2(4)
True
>>> is_power2(3)
False

django_ca.utils.multiline_url_validator(value)
Validate that a TextField contains one valid URL per line.

See also:

https://docs.djangoproject.com/en/1.9/ref/validators/

django_ca.utils.parse_general_name(name)
Parse a general name from user input.

62 Chapter 15. django_ca.utils - utility functions

https://docs.djangoproject.com/en/1.9/ref/validators/

django-ca Documentation, Release 1.10.0

This function will do its best to detect the intended type of any value passed to it:

>>> parse_general_name('example.com')
<DNSName(value='example.com')>
>>> parse_general_name('*.example.com')
<DNSName(value='*.example.com')>
>>> parse_general_name('.example.com') # Syntax used e.g. for NameConstraints:
→˓All levels of subdomains
<DNSName(value='.example.com')>
>>> parse_general_name('user@example.com')
<RFC822Name(value='user@example.com')>
>>> parse_general_name('https://example.com')
<UniformResourceIdentifier(value='https://example.com')>
>>> parse_general_name('1.2.3.4')
<IPAddress(value=1.2.3.4)>
>>> parse_general_name('fd00::1')
<IPAddress(value=fd00::1)>
>>> parse_general_name('/CN=example.com') # doctest: +NORMALIZE_WHITESPACE
<DirectoryName(value=<Name([<NameAttribute(oid=<ObjectIdentifier(oid=2.5.4.3,
→˓name=commonName)>,

value='example.com')>])>)>

The default fallback is to assume a DNSName. If this doesn’t work, an exception will be raised:

>>> parse_general_name('foo..bar`*123')
Traceback (most recent call last):

...
idna.core.IDNAError: The label b'' is not a valid A-label
>>> parse_general_name('foo bar')
Traceback (most recent call last):

...
idna.core.IDNAError: The label b'foo bar' is not a valid A-label

If you want to override detection, you can prefix the name to match GENERAL_NAME_RE:

>>> parse_general_name('email:user@example.com')
<RFC822Name(value='user@example.com')>
>>> parse_general_name('URI:https://example.com')
<UniformResourceIdentifier(value='https://example.com')>
>>> parse_general_name('dirname:/CN=example.com') # doctest: +NORMALIZE_
→˓WHITESPACE
<DirectoryName(value=<Name([<NameAttribute(oid=<ObjectIdentifier(oid=2.5.4.3,
→˓name=commonName)>,

value='example.com')>])>)>

Some more exotic values can only be generated by using this prefix:

>>> parse_general_name('rid:2.5.4.3')
<RegisteredID(value=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>)>
>>> parse_general_name('otherName:2.5.4.3;UTF8:example.com')
<OtherName(type_id=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>, value=b
→˓'example.com')>

If you give a prefixed value, this function is less forgiving of any typos and does not catch any exceptions:

>>> parse_general_name('email:foo@bar com')
Traceback (most recent call last):

(continues on next page)

63

https://cryptography.io/en/latest/x509/reference/#cryptography.x509.DNSName

django-ca Documentation, Release 1.10.0

(continued from previous page)

...
ValueError: Invalid domain: bar com

django_ca.utils.parse_hash_algorithm(value=None)
Parse a hash algorithm value.

The most common use case is to pass a str naming a class in hashes.

For convenience, passing None will return the value of CA_DIGEST_ALGORITHM, and passing an
HashAlgorithm will return that instance unchanged.

Example usage:

>>> parse_hash_algorithm()
<cryptography.hazmat.primitives.hashes.SHA512 object at ...>
>>> parse_hash_algorithm('SHA512')
<cryptography.hazmat.primitives.hashes.SHA512 object at ...>
>>> parse_hash_algorithm(' SHA512 ')
<cryptography.hazmat.primitives.hashes.SHA512 object at ...>
>>> parse_hash_algorithm(hashes.SHA512)
<cryptography.hazmat.primitives.hashes.SHA512 object at ...>
>>> parse_hash_algorithm(hashes.SHA512())
<cryptography.hazmat.primitives.hashes.SHA512 object at ...>
>>> parse_hash_algorithm('Wrong')
Traceback (most recent call last):

...
ValueError: Unknown hash algorithm: Wrong
>>> parse_hash_algorithm(object())
Traceback (most recent call last):

...
ValueError: Unknown type passed: object

Parameters

value [str or HashAlgorithm, optional] The value to parse, the function description on how
possible values are used.

Returns

algorithm A HashAlgorithm instance.

Raises

ValueError If an unknown object is passed or if value does not name a known algorithm.

django_ca.utils.parse_key_curve(value=None)
Parse an elliptic curve value.

This function uses a value identifying an elliptic curve to return an EllipticCurve instance. The name
must match a class name of one of the classes named under “Elliptic Curves” in Elliptic curve
cryptography.

For convenience, passing None will return the value of CA_DEFAULT_ECC_CURVE, and passing an
EllipticCurve will return that instance unchanged.

Example usage:

>>> parse_key_curve('SECP256R1')
<cryptography.hazmat.primitives.asymmetric.ec.SECP256R1 object at ...>

(continues on next page)

64 Chapter 15. django_ca.utils - utility functions

https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#module-cryptography.hazmat.primitives.hashes
https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.HashAlgorithm
https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.HashAlgorithm
https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.HashAlgorithm
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/ec/#cryptography.hazmat.primitives.asymmetric.ec.EllipticCurve
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/ec/
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/ec/
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/ec/#cryptography.hazmat.primitives.asymmetric.ec.EllipticCurve

django-ca Documentation, Release 1.10.0

(continued from previous page)

>>> parse_key_curve('SECP384R1')
<cryptography.hazmat.primitives.asymmetric.ec.SECP384R1 object at ...>
>>> parse_key_curve(ec.SECP256R1())
<cryptography.hazmat.primitives.asymmetric.ec.SECP256R1 object at ...>
>>> parse_key_curve()
<cryptography.hazmat.primitives.asymmetric.ec.SECP256R1 object at ...>

Parameters

value [str, otional] The name of the curve or None to return the default curve.

Returns

curve An EllipticCurve instance.

Raises

ValueError If the named curve is not supported.

django_ca.utils.parse_name(name)
Parses a subject string as used in OpenSSLs command line utilities.

The name is expected to be close to the subject format commonly used by OpenSSL, for example /C=AT/
L=Vienna/CN=example.com/emailAddress=user@example.com. The function does its best to
be lenient on deviations from the format, object identifiers are case-insensitive (e.g. cn is the same as CN,
whitespace at the start and end is stripped and the subject does not have to start with a slash (/).

>>> parse_name('/CN=example.com')
[('CN', 'example.com')]
>>> parse_name('c=AT/l= Vienna/o="ex org"/CN=example.com')
[('C', 'AT'), ('L', 'Vienna'), ('O', 'ex org'), ('CN', 'example.com')]

Dictionary keys are normalized to the values of OID_NAME_MAPPINGS and keys will be sorted based on x509
name specifications regardless of the given order:

>>> parse_name('L="Vienna / District"/EMAILaddress=user@example.com')
[('L', 'Vienna / District'), ('emailAddress', 'user@example.com')]
>>> parse_name('/C=AT/CN=example.com') == parse_name('/CN=example.com/C=AT')
True

Due to the magic of NAME_RE, the function even supports quoting strings and including slashes, so strings like
/OU="Org / Org Unit"/CN=example.com will work as expected.

>>> parse_name('L="Vienna / District"/CN=example.com')
[('L', 'Vienna / District'), ('CN', 'example.com')]

But note that it’s still easy to trick this function, if you really want to. The following example is not a valid
subject, the location is just bogus, and whatever you were expecting as output, it’s certainly different:

>>> parse_name('L="Vienna " District"/CN=example.com')
[('L', 'Vienna'), ('CN', 'example.com')]

Examples of where this string is used are:

openssl req -new -key priv.key -out csr -utf8 -batch -sha256 -subj '/C=AT/
→˓CN=example.com'
openssl x509 -in cert.pem -noout -subject -nameopt compat
/C=AT/L=Vienna/CN=example.com

65

https://cryptography.io/en/latest/hazmat/primitives/asymmetric/ec/#cryptography.hazmat.primitives.asymmetric.ec.EllipticCurve

django-ca Documentation, Release 1.10.0

django_ca.utils.sort_name(subject)
Returns the subject in the correct order for a x509 subject.

django_ca.utils.validate_email(addr)
Validate an email address.

This function raises ValueError if the email address is not valid.

>>> validate_email('foo@bar.com')
'foo@bar.com'
>>> validate_email('foo@bar com')
Traceback (most recent call last):

...
ValueError: Invalid domain: bar com

django_ca.utils.write_private_file(path, data)
Function to write binary data to a file that will only be readable to the user.

django_ca.utils.x509_name(name)
Parses a subject into a x509.Name.

If name is a string, parse_name() is used to parse it.

>>> x509_name('/C=AT/CN=example.com') # doctest: +NORMALIZE_WHITESPACE
<Name([<NameAttribute(oid=<ObjectIdentifier(oid=2.5.4.6, name=countryName)>,
→˓value='AT')>,

<NameAttribute(oid=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>, value=
→˓'example.com')>])>
>>> x509_name([('C', 'AT'), ('CN', 'example.com')]) # doctest: +NORMALIZE_
→˓WHITESPACE
<Name([<NameAttribute(oid=<ObjectIdentifier(oid=2.5.4.6, name=countryName)>,
→˓value='AT')>,

<NameAttribute(oid=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>, value=
→˓'example.com')>])>

Development documentation:

66 Chapter 15. django_ca.utils - utility functions

https://cryptography.io/en/latest/x509/reference/#cryptography.x509.Name

CHAPTER 16

Development

16.1 Setup demo

You can set up a demo using fab init_demo. First create a minimal localsettings.py file (in ca/ca/
localsettings.py):

DEBUG = True
SECRET_KEY = "whatever"

And then simply run fab init_demo from the root directory of your project.

16.1.1 Development webserver via SSL

To test a certificate in your webserver, first install the root certificate authority in your browser, then run stunnel4
and manage.py runserver in two separate shells:

$ stunnel4 .stunnel4.conf

There is also a second config file using a revoked certificate. If you use it, browsers will display an error.

$ stunnel4 .stunnel4-revoked.conf

You can now start your development webserver normally:

$ DJANGO_SETTINGS_MODULE=ca.demosettings python manage.py runserver

. . . and visit https://localhost:8443.

16.2 Run test-suite

To run the test-suite, simply execute:

67

https://localhost:8443

django-ca Documentation, Release 1.10.0

python setup.py test

. . . or just run some of the tests:

python setup.py test --suite=tests_command_dump_crl

To generate a coverate report:

python setup.py coverage

16.3 Useful OpenSSL commands

16.3.1 Verification

Verify a certificate signed by a root CA (cert.crt could also be an intermediate CA):

openssl verify -CAfile ca.crt cert.crt

If you have an intermediate CA:

openssl verify -CAfile ca.crt -untrusted intermediate.crt cert.crt

16.3.2 CRLs

Convert a CRL to text on stdout:

openssl crl -inform der -in sfsca.crl -noout -text

Convert a CRL to PEM to a file:

openssl crl -inform der -in sfsca.crl -outform pem -out test.pem

Verify a certificate using a CRL:

openssl verify -CAfile files/ca_crl.pem -crl_check cert.pem

16.3.3 OCSP

Run a OCSP responder:

openssl ocsp -index files/ocsp_index.txt -port 8888 \
-rsigner files/localhost.pem -rkey files/localhost.key \
-CA ca.pem -text

Verify a certificate using OCSP:

openssl ocsp -CAfile ca.pem -issuer ca.pem -cert cert.pem \
-url http://localhost:8888 -resp_text

68 Chapter 16. Development

django-ca Documentation, Release 1.10.0

16.3.4 Conversion

Convert a PEM formatted public key to DER:

openssl x509 -in pub.pem -outform der -out pub.der

Convert a PEM formatted private key to DER:

openssl rsa -in priv.pem -outform der -out priv.der

Convert a p7c/pkcs7 file to PEM (Let’s Encrypt CA Issuer field) (see also pkcs7(1SSL) - online):

openssl pkcs7 -inform der -in letsencrypt.p7c -print_certs \
-outform pem -out letsencrypt.pem

16.3. Useful OpenSSL commands 69

https://www.openssl.org/docs/manmaster/apps/pkcs7.html

django-ca Documentation, Release 1.10.0

70 Chapter 16. Development

CHAPTER 17

Contribute

Please also see Development for how to setup a development environment.

To contribute to django-ca simply do a fork on on github and submit a pull request when you’re happy.

When doing a pull request, please make sure to explain what your improvement does or what bug is fixed by it and
how to reproduce this locally.

17.1 Code quality

This project is very rigorous about code quality standards. That means that the source code is checked with Flake8 and
import order is checked with isort. Before you submit a pull request, please make sure that all tests pass by executing:

python setup.py code_quality

Naturally, I also expect the test suite to still pass. Please make sure you test in at least your local Python2 and Python3
environments:

python setup.py test

17.2 Write tests

Please write tests for any new functionality. If you provide a bugfix, write a test that tests the fix, which means that the
test should fail on current master and pass on your pull request.

If a function is also covered with doctests, please consider adding an example there as well, if it affects handling a
parameter or something.

71

https://github.com/mathiasertl/django-ca
http://flake8.pycqa.org/en/latest/
http://isort.readthedocs.io/en/latest/

django-ca Documentation, Release 1.10.0

17.3 Code coverage

Generate a coverage report and make sure that your code is covered by tests.

Warning: Code coverage is not a catch all tool for “yes, this code is well-tested”. It’s a tool to catch missed spots,
but you must still think for yourself about what and how to test.

72 Chapter 17. Contribute

CHAPTER 18

Release process

18.1 Before release

• Update requirements*.txt (use pip list -o).

• Make sure that setup.py has proper requirements.

• Check .travis.yaml if the proper Django and cryptography versions are tested.

• Check test coverage (setup.py coverage).

• Update version parameter in setup.py.

• Update version and release in docs/source/conf.py.

• Make sure that docs/source/changelog.rst is up to date.

• Push the last commit and make sure that Travis and Read The Docs are updated.

18.2 Docker image

Create a docker image:

docker build --no-cache -t django-ca .
docker run -d --name=django-ca -p 8000:8000 django-ca
docker exec -it django-ca python ca/manage.py createsuperuser
docker exec -it django-ca python ca/manage.py init_ca \

example /C=AT/ST=Vienna/L=Vienna/O=Org/CN=ca.example.com

. . . and browse http://localhost:8000/admin.

73

http://localhost:8000/admin

django-ca Documentation, Release 1.10.0

18.3 Release process

• Tag the release: git tag -s $version

• Push the tag: git push origin --tags

• Create a release on GitHub.

• Upload release to PyPI: python setup.py sdist bdist_wheel upload.

• Tag and upload the docker image (note that we create a image revision by appending -1):

docker tag django-ca mathiasertl/django-ca
docker tag django-ca mathiasertl/django-ca:$version-1
docker push mathiasertl/django-ca
docker push mathiasertl/django-ca:$version-1

74 Chapter 18. Release process

https://github.com/mathiasertl/django-ca/tags

CHAPTER 19

x509 extensions in other CAs

This page documents the x509 extensions (e.g. for CRLs, etc.) set by other CAs. The information here is used by
django-ca to initialize and sign certificate authorities and certificates.

Helpful descriptions of the meaning of various extensions can also be found in x509v3_config(5SSL) (online).

19.1 CommonName

Of course not an extension, but included here for completeness.

CA Value
Let’s En-
crypt X1

C=US, O=Let’s Encrypt, CN=Let’s Encrypt Authority X1

Let’s En-
crypt X3

C=US, O=Let’s Encrypt, CN=Let’s Encrypt Authority X3

StartSSL C=IL, O=StartCom Ltd., OU=Secure Digital Certificate Signing, CN=StartCom Certification Au-
thority

StartSSL
Class 2

C=IL, O=StartCom Ltd., OU=Secure Digital Certificate Signing, CN=StartCom Class 2 Primary
Intermediate Server CA

StartSSL
Class 3

C=IL, O=StartCom Ltd., OU=StartCom Certification Authority, CN=StartCom Class 3 OV Server
CA

GeoTrust
Global

C=US, O=GeoTrust Inc., CN=GeoTrust Global CA

RapidSSL
G3

C=US, O=GeoTrust Inc., CN=RapidSSL SHA256 CA - G3

Comodo C=GB, ST=Greater Manchester, L=Salford, O=COMODO CA Limited, CN=COMODO RSA Cer-
tification Authority

Comodo DV C=GB, ST=Greater Manchester, L=Salford, O=COMODO CA Limited, CN=COMODO RSA Do-
main Validation Secure Server CA

GlobalSign C=BE, O=GlobalSign nv-sa, OU=Root CA, CN=GlobalSign Root CA
GlobalSign
DV

C=BE, O=GlobalSign nv-sa, CN=GlobalSign Domain Validation CA - SHA256 - G2

75

https://www.openssl.org/docs/manmaster/apps/x509v3_config.html

django-ca Documentation, Release 1.10.0

19.2 authorityInfoAccess

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.2.1

The “CA Issuers” is a URI pointing to the signing certificate. The certificate is in DER/ASN1 format and has a
Content-Type: application/x-x509-ca-cert header (except where noted).

19.2.1 In CA certificates

Let’s Encrypt is notable here because its CA Issuers field points to a pkcs7 file and the HTTP response returns a
Content-Type: application/x-pkcs7-mime header.

The certificate pointed to by the CA Issuers field is the root certificate (so the Comodo DV CA points to the AddTrust
CA that signed the Comodo Root CA).

CA Value
Let’s Encrypt X1

• OCSP - URI:http://isrg.trustid.ocsp.identrust.com
• CA Issuers - URI:http://apps.identrust.com/roots/dstrootcax3.p7c

Let’s Encrypt X3
• OCSP - URI:http://isrg.trustid.ocsp.identrust.com
• CA Issuers - URI:http://apps.identrust.com/roots/dstrootcax3.p7c

StartSSL (not present)
StartSSL Class 2

• OCSP - URI:http://ocsp.startssl.com/ca
• CA Issuers - URI:http://aia.startssl.com/certs/ca.crt

StartSSL Class 3
• OCSP - URI:http://ocsp.startssl.com
• CA Issuers - URI:http://aia.startssl.com/certs/ca.crt

GeoTrust Global (not present)
RapidSSL G3 OCSP - URI:http://g.symcd.com
Comodo OCSP - URI:http://ocsp.usertrust.com
Comodo DV

• CA Issuers - URI:http://crt.comodoca.com/COMODORSAAddTrustCA.crt
• OCSP - URI:http://ocsp.comodoca.com

GlobalSign (not present)
GlobalSign DV OCSP - URI:http://ocsp.globalsign.com/rootr1

19.2.2 In signed certificates

Let’s Encrypt is again special in that the response has a Content-Type: application/pkix-cert header
(but at least it’s in DER format like every other certificate). RapidSSL uses Content-Type: text/plain.

The CA Issuers field sometimes points to the signing certificate (e.g. StartSSL) or to the root CA (e.g. Comodo DV,
which points to the AddTrust Root CA)

76 Chapter 19. x509 extensions in other CAs

https://tools.ietf.org/html/rfc5280#section-4.2.2.1

django-ca Documentation, Release 1.10.0

CA Value
Let’s Encrypt X1

• OCSP - URI:http://ocsp.int-x1.letsencrypt.org/
• CA Issuers - URI:http://cert.int-

x1.letsencrypt.org

Let’s Encrypt X3
• OCSP - URI:http://ocsp.int-x3.letsencrypt.org/
• CA Issuers - URI:http://cert.int-

x3.letsencrypt.org/

StartSSL Class 2
• OCSP - URI:http://ocsp.startssl.com/sub/class2/server/ca
• CA Issuers - URI:http://aia.startssl.com/certs/sub.class2.server.ca.crt

StartSSL Class 3
• OCSP - URI:http://ocsp.startssl.com
• CA Issuers - URI:http://aia.startssl.com/certs/sca.server3.crt

RapidSSL G3
• OCSP - URI:http://gv.symcd.com
• CA Issuers - URI:http://gv.symcb.com/gv.crt

Comodo DV
• CA Issuers - URI:http://crt.comodoca.com/COMODORSADomainValidationSecureServerCA.crt
• OCSP - URI:http://ocsp.comodoca.com

GlobalSign DV
• CA Issuers - URI:http://secure.globalsign.com/cacert/gsdomainvalsha2g2r1.crt
• OCSP - URI:http://ocsp2.globalsign.com/gsdomainvalsha2g2

19.3 authorityKeyIdentifier

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.1.1

A hash identifying the CA used to sign the certificate. In theory the identifier may also be based on the issuer name
and serial number, but in the wild, all certificates reference the subjectKeyIdentifier. Self-signed certificates (e.g. Root
CAs, like StartSSL and Comodo below) will reference themself, while signed certificates reference the signed CA,
e.g.:

Name subjectKeyIdentifier authorityKeyIdentifier
Root CA foo keyid:foo
Intermediate CA bar keyid:foo
Client Cert bla keyid:bar

19.3. authorityKeyIdentifier 77

https://tools.ietf.org/html/rfc5280#section-4.2.1.1

django-ca Documentation, Release 1.10.0

19.3.1 In CA certificates

CA Value
Let’s Encrypt X1 keyid:C4:A7:B1:A4:7B:2C:71:FA:DB:E1:4B:90:75:FF:C4:15:60:85:89:10
Let’s Encrypt X3 keyid:C4:A7:B1:A4:7B:2C:71:FA:DB:E1:4B:90:75:FF:C4:15:60:85:89:10
StartSSL keyid:4E:0B:EF:1A:A4:40:5B:A5:17:69:87:30:CA:34:68:43:D0:41:AE:F2
StartSSL Class 2 keyid:4E:0B:EF:1A:A4:40:5B:A5:17:69:87:30:CA:34:68:43:D0:41:AE:F2
StartSSL Class 3 keyid:4E:0B:EF:1A:A4:40:5B:A5:17:69:87:30:CA:34:68:43:D0:41:AE:F2
GeoTrust Global keyid:C0:7A:98:68:8D:89:FB:AB:05:64:0C:11:7D:AA:7D:65:B8:CA:CC:4E
RapidSSL G3 keyid:C0:7A:98:68:8D:89:FB:AB:05:64:0C:11:7D:AA:7D:65:B8:CA:CC:4E
Comodo keyid:AD:BD:98:7A:34:B4:26:F7:FA:C4:26:54:EF:03:BD:E0:24:CB:54:1A
Comodo DV keyid:BB:AF:7E:02:3D:FA:A6:F1:3C:84:8E:AD:EE:38:98:EC:D9:32:32:D4
GlobalSign (not present)
GlobalSign DV keyid:60:7B:66:1A:45:0D:97:CA:89:50:2F:7D:04:CD:34:A8:FF:FC:FD:4B

19.3.2 In signed certificates

CA Value
Let’s Encrypt X1 keyid:A8:4A:6A:63:04:7D:DD:BA:E6:D1:39:B7:A6:45:65:EF:F3:A8:EC:A1
Let’s Encrypt X3 keyid:A8:4A:6A:63:04:7D:DD:BA:E6:D1:39:B7:A6:45:65:EF:F3:A8:EC:A1
StartSSL Class 2 keyid:11:DB:23:45:FD:54:CC:6A:71:6F:84:8A:03:D7:BE:F7:01:2F:26:86
StartSSL Class 3 keyid:B1:3F:1C:92:7B:92:B0:5A:25:B3:38:FB:9C:07:A4:26:50:32:E3:51
RapidSSL G3 keyid:C3:9C:F3:FC:D3:46:08:34:BB:CE:46:7F:A0:7C:5B:F3:E2:08:CB:59
Comodo DV keyid:90:AF:6A:3A:94:5A:0B:D8:90:EA:12:56:73:DF:43:B4:3A:28:DA:E7
GlobalSign DV keyid:EA:4E:7C:D4:80:2D:E5:15:81:86:26:8C:82:6D:C0:98:A4:CF:97:0F

19.4 basicConstraints

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.1.9

The basicConstraints extension specifies if the certificate can be used as a certificate authority. It is always
marked as critical. The pathlen attribute specifies the levels of possible intermediate CAs. If not present, the level
of intermediate CAs is unlimited, a pathlen:0 means that the CA itself can not issue certificates with CA:TRUE
itself.

78 Chapter 19. x509 extensions in other CAs

https://tools.ietf.org/html/rfc5280#section-4.2.1.9

django-ca Documentation, Release 1.10.0

19.4.1 In CA certificates

CA Value
Let’s Encrypt X1 (critical) CA:TRUE, pathlen:0
Let’s Encrypt X3 (critical) CA:TRUE, pathlen:0
StartSSL (critical) CA:TRUE
StartSSL Class 2 (critical) CA:TRUE, pathlen:0
StartSSL Class 3 (critical) CA:TRUE, pathlen:0
GeoTrust Global (critical) CA:TRUE
RapidSSL G3 (critical) CA:TRUE, pathlen:0
Comodo (critical) CA:TRUE
Comodo DV (critical) CA:TRUE, pathlen:0
GlobalSign (critical) CA:TRUE
GlobalSign DV (critical) CA:TRUE, pathlen:0

19.4.2 In signed certificates

CA Value
Let’s Encrypt X1 (critical) CA:FALSE
Let’s Encrypt X3 (critical) CA:FALSE
StartSSL Class 2 (critical) CA:FALSE
StartSSL Class 3 CA:FALSE
RapidSSL G3 (critical) CA:FALSE
Comodo DV (critical) CA:FALSE
GlobalSign DV CA:FALSE

19.5 crlDistributionPoints

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.1.13

In theory a complex multi-valued extension, this extension usually just holds a URI pointing to a Certificate Revokation
List (CRL).

Root certificate authorities (StartSSL, GeoTrust Global, GlobalSign) do not set this field. This usually isn’t a problem
since clients have a list of trusted root certificates anyway, and browsers and distributions should get regular updates
on the list of trusted certificates.

All CRLs linked here are all in DER/ASN1 format, and the Content-Type header in the response is set to
application/pkix-crl. Only Comodo uses application/x-pkcs7-crl, but it is also in DER/ASN1
format.

19.5. crlDistributionPoints 79

https://tools.ietf.org/html/rfc5280#section-4.2.1.13

django-ca Documentation, Release 1.10.0

19.5.1 In CA certificates

CA Value Content-Type
Let’s Encrypt
X1

URI:http://crl.identrust.com/DSTROOTCAX3CRL.crl application/pkix-crl

Let’s Encrypt
X3

URI:http://crl.identrust.com/DSTROOTCAX3CRL.crl application/pkix-crl

StartSSL (not present)
StartSSL Class 2 URI:http://crl.startssl.com/sfsca.crl application/pkix-crl
StartSSL Class 3 URI:http://crl.startssl.com/sfsca.crl application/pkix-crl
GeoTrust Global (not present)
RapidSSL G3 URI:http://g.symcb.com/crls/gtglobal.crl application/pkix-crl
Comodo URI:http://crl.usertrust.com/AddTrustExternalCARoot.crl application/x-pkcs7-

crl
Comodo DV URI:http://crl.comodoca.com/COMODORSACertificationAuthority.crl application/x-pkcs7-

crl
GlobalSign (not present)
GlobalSign DV URI:http://crl.globalsign.net/root.crl application/pkix-crl

19.5.2 In signed certificates

Let’s Encrypt is so far the only CA that does not maintain a CRL for signed certificates. Major CAs usually don’t
fancy CRLs much because they are a large file (e.g. Comodos CRL is 1.5MB) containing all certificates and cause
major traffic for CAs. OCSP is just better in every way.

CA Value Content-Type
Let’s Encrypt (not present)
StartSSL
Class 2

URI:http://crl.startssl.com/crt2-crl.crl application/pkix-crl

StartSSL
Class 3

URI:http://crl.startssl.com/sca-server3.crl application/pkix-crl

RapidSSL G3 URI:http://gv.symcb.com/gv.crl application/pkix-crl
Comodo DV URI:http://crl.comodoca.com/COMODORSADomainValidationSecureServerCA.crlapplication/x-

pkcs7-crl
GlobalSign
DV

URI:http://crl.globalsign.com/gs/gsdomainvalsha2g2.crl application/pkix-crl

19.6 extendedKeyUsage

A list of purposes for which the certificate can be used for. CA certificates usually do not set this field.

80 Chapter 19. x509 extensions in other CAs

django-ca Documentation, Release 1.10.0

19.6.1 In CA certificates

CA Value
Let’s Encrypt X1 (not present)
Let’s Encrypt X3 (not present)
StartSSL (not present)
StartSSL Class 2 (not present)
StartSSL Class 3 TLS Web Client Authentication, TLS Web Server Authentication
GeoTrust Global (not present)
RapidSSL G3 (not present)
Comodo (not present)
Comodo DV TLS Web Server Authentication, TLS Web Client Authentication
GlobalSign (not present)
GlobalSign DV (not present)

19.6.2 In signed certificates

CA Value
Let’s Encrypt X1 TLS Web Server Authentication, TLS Web Client Authentication
Let’s Encrypt X3 TLS Web Server Authentication, TLS Web Client Authentication
StartSSL Class 2 TLS Web Client Authentication, TLS Web Server Authentication
StartSSL Class 3 TLS Web Client Authentication, TLS Web Server Authentication
RapidSSL G3 TLS Web Server Authentication, TLS Web Client Authentication
Comodo DV TLS Web Server Authentication, TLS Web Client Authentication
GlobalSign DV TLS Web Server Authentication, TLS Web Client Authentication

19.7 issuerAltName

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.1.7

Only StartSSL sets this field in its signed certificates. It’s a URI pointing to their homepage.

19.7.1 In CA certificates

CA Value
Let’s Encrypt (not present)
StartSSL (not present)
StartSSL Class 2 (not present)
StartSSL Class 3 (not present)
GeoTrust Global (not present)
RapidSSL G3 (not present)
Comodo (not present)
Comodo DV (not present)
GlobalSign (not present)
GlobalSign DV (not present)

19.7. issuerAltName 81

https://tools.ietf.org/html/rfc5280#section-4.2.1.7

django-ca Documentation, Release 1.10.0

19.7.2 In signed certificates

CA Value
Let’s Encrypt (not present)
StartSSL Class 2 URI:http://www.startssl.com/
StartSSL Class 3 URI:http://www.startssl.com/
RapidSSL G3 (not present)
Comodo DV (not present)
GlobalSign DV (not present)

19.8 keyUsage

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.1.3

List of permitted key usages. Usually marked as critical, except for certificates signed by StartSSL.

19.8.1 In CA certificates

CA Value
Let’s Encrypt X1 (critical) Digital Signature, Certificate Sign, CRL Sign
Let’s Encrypt X3 (critical) Digital Signature, Certificate Sign, CRL Sign
StartSSL (critical) Certificate Sign, CRL Sign
StartSSL Class 2 (critical) Certificate Sign, CRL Sign
StartSSL Class 3 (critical) Certificate Sign, CRL Sign
GeoTrust Global (critical) Certificate Sign, CRL Sign
RapidSSL G3 (critical) Certificate Sign, CRL Sign
Comodo (critical) Digital Signature, Certificate Sign, CRL Sign
Comodo DV (critical) Digital Signature, Certificate Sign, CRL Sign
GlobalSign (critical) Certificate Sign, CRL Sign
GlobalSign DV (critical) Certificate Sign, CRL Sign

19.8.2 In signed certificates

CA Value
Let’s Encrypt X1 (critical) Digital Signature, Key Encipherment
Let’s Encrypt X3 (critical) Digital Signature, Key Encipherment
StartSSL Class 2 Digital Signature, Key Encipherment, Key Agreement
StartSSL Class 3 Digital Signature, Key Encipherment
RapidSSL G3 (critical) Digital Signature, Key Encipherment
Comodo DV (critical) Digital Signature, Key Encipherment
GlobalSign DV (critical) Digital Signature, Key Encipherment

82 Chapter 19. x509 extensions in other CAs

https://tools.ietf.org/html/rfc5280#section-4.2.1.3

django-ca Documentation, Release 1.10.0

19.9 subjectAltName

The subjectAltName extension is not present in any CA certificate, and of course whatever the customer requests
in signed certificates.

19.9.1 In CA certificates

CA Value
Let’s Encrypt •

StartSSL •

StartSSL Class 2 •

StartSSL Class 3 •

GeoTrust Global •

RapidSSL G3 •

Comodo •

Comodo DV •

GlobalSign •

GlobalSign DV •

19.10 subjectKeyIdentifier

See also:

https://tools.ietf.org/html/rfc5280#section-4.2.1.2

The subjectKeyIdentifier extension provides a means of identifying certificates. It is a mandatory extension for CA
certificates. Currently only RapidSSL does not set this for signed certificates.

The value of the subjectKeyIdentifier extension reappears in the authorityKeyIdentifier extension (prefixed with
keyid:).

19.9. subjectAltName 83

https://tools.ietf.org/html/rfc5280#section-4.2.1.2

django-ca Documentation, Release 1.10.0

19.10.1 In CA certificates

CA Value
Let’s Encrypt X1 A8:4A:6A:63:04:7D:DD:BA:E6:D1:39:B7:A6:45:65:EF:F3:A8:EC:A1
Let’s Encrypt X3 A8:4A:6A:63:04:7D:DD:BA:E6:D1:39:B7:A6:45:65:EF:F3:A8:EC:A1
StartSSL 4E:0B:EF:1A:A4:40:5B:A5:17:69:87:30:CA:34:68:43:D0:41:AE:F2
StartSSL Class 2 11:DB:23:45:FD:54:CC:6A:71:6F:84:8A:03:D7:BE:F7:01:2F:26:86
StartSSL Class 3 B1:3F:1C:92:7B:92:B0:5A:25:B3:38:FB:9C:07:A4:26:50:32:E3:51
GeoTrust Global C0:7A:98:68:8D:89:FB:AB:05:64:0C:11:7D:AA:7D:65:B8:CA:CC:4E
RapidSSL G3 C3:9C:F3:FC:D3:46:08:34:BB:CE:46:7F:A0:7C:5B:F3:E2:08:CB:59
Comodo BB:AF:7E:02:3D:FA:A6:F1:3C:84:8E:AD:EE:38:98:EC:D9:32:32:D4
Comodo DV 90:AF:6A:3A:94:5A:0B:D8:90:EA:12:56:73:DF:43:B4:3A:28:DA:E7
GlobalSign 60:7B:66:1A:45:0D:97:CA:89:50:2F:7D:04:CD:34:A8:FF:FC:FD:4B
GlobalSign DV EA:4E:7C:D4:80:2D:E5:15:81:86:26:8C:82:6D:C0:98:A4:CF:97:0F

19.10.2 In signed certificates

CA Value
Let’s Encrypt X1 F4:F3:B8:F5:43:90:2E:A2:7F:DD:51:4A:5F:3E:AC:FB:F1:33:EE:95
Let’s Encrypt X3 71:57:F2:DC:D2:02:5C:00:5E:74:28:57:4C:7E:61:43:44:44:AF:84
StartSSL Class 2 C7:AA:D9:A4:F0:BC:D1:C1:1B:05:D2:19:71:0A:86:F8:58:0F:F0:99
StartSSL Class 3 F0:72:65:5E:21:AA:16:76:2C:6F:D0:63:53:0C:68:D5:89:50:2A:73
RapidSSL G3 (not present)
Comodo DV F2:CB:1F:E9:6E:D5:43:E3:85:75:98:5F:97:7C:B0:59:7F:D5:C0:C0
GlobalSign DV 52:5A:45:5B:D4:9D:AC:65:30:BD:67:80:6C:D1:A1:3E:09:F7:FD:92

19.11 Other extensions

Extensions used by certificates encountered in the wild that django-ca does not (yet) support in any way.

19.11.1 In CA certificates

CA Value
Let’s Encrypt X1 X509v3 Certificate Policies, X509v3 Name Constraints
Let’s Encrypt X3 X509v3 Certificate Policies
StartSSL X509v3 Certificate Policies, Netscape Cert Type, Netscape Comment
StartSSL Class 2 X509v3 Certificate Policies
StartSSL Class 3 X509v3 Certificate Policies
GeoTrust Global (none)
RapidSSL G3 X509v3 Certificate Policies
Comodo X509v3 Certificate Policies
Comodo DV X509v3 Certificate Policies
GlobalSign (none)
GlobalSign DV X509v3 Certificate Policies

84 Chapter 19. x509 extensions in other CAs

django-ca Documentation, Release 1.10.0

19.11.2 In signed certificates

CA Value
Let’s Encrypt X1 X509v3 Certificate Policies
Let’s Encrypt X3 X509v3 Certificate Policies
StartSSL Class 2 X509v3 Certificate Policies
StartSSL Class 3 X509v3 Certificate Policies
RapidSSL G3 X509v3 Certificate Policies
Comodo DV X509v3 Certificate Policies
GlobalSign DV X509v3 Certificate Policies

19.11. Other extensions 85

django-ca Documentation, Release 1.10.0

86 Chapter 19. x509 extensions in other CAs

CHAPTER 20

x509 extensions

This page provides a list of supported TLS extensions. They can be selected in the admin interface or via the command
line. Please see Override extensions for more information on how to set these extensions in the command line.

20.1 keyUsage

The keyUsage extension defines the basic purpose of the certificate. It is defined in RFC5280, section 4.2.1.3. The
extension is usually defined as critical.

Name Used for
cRLSign
dataEncipherment email encryption
decipherOnly
digitalSignature TLS connections (client and server), email and code signing, OCSP responder
encipherOnly
keyAgreement TLS server connections
keyCertSign
keyEncipherment TLS server connections, email encryption, OCSP responder
nonRepudiation OCSP responder

Currently, the default profiles (see CA_PROFILES setting) use these values:

87

https://tools.ietf.org/html/rfc5280#section-4.2.1.3

django-ca Documentation, Release 1.10.0

value client server webserver enduser ocsp
cRLSign
dataEncipherment X
decipherOnly
digitalSignature X X X X X
encipherOnly
keyAgreement X X
keyCertSign
keyEncipherment X X X X
nonRepudiation X

20.2 extendedKeyUsage

The extendedKeyUsage extension refines the keyUsage extension and is defined in RFC5280, section 4.2.1.12.
The extension is usually not defined as critical.

Name Used for
serverAuth TLS server connections
clientAuth TLS client connections
codeSigning Code signing
emailProtection Email signing/encryption
timeStamping
OCSPSigning Running an OCSP responder
smartcardLogon Required for user certificates on smartcards for PKINIT logon on Windows
msKDC Required for Domain Controller certificates to authorise them for PKINIT logon on Windows

Currently, the default profiles (see CA_PROFILES setting) use these values:

value client server webserver enduser ocsp
serverAuth X X X
clientAuth X X X
codeSigning X
emailProtection
timeStamping
OCSPSigning X
smartcardLogon
msKDC

20.3 TLSFeature

The TLSFeature extension is defined in RFC7633. This extension should not be marked as critical.

Name Description
OCSPMustStaple TLS connections must include a stapled OCSP response, defined in RFC6066.
MultipleCertStatusRequest Not commonly used, defined in RFC6961.

88 Chapter 20. x509 extensions

https://tools.ietf.org/html/rfc5280#section-4.2.1.12
https://tools.ietf.org/html/rfc7633
https://tools.ietf.org/html/rfc6066.html
https://tools.ietf.org/html/rfc6961.html

django-ca Documentation, Release 1.10.0

The use of this extension is currently discouraged. Current OCSP stapling implementation are still poor, making
OCSPMustStaple a dangerous extension.

20.3. TLSFeature 89

django-ca Documentation, Release 1.10.0

90 Chapter 20. x509 extensions

CHAPTER 21

Indices and tables

• genindex

• modindex

• search

91

django-ca Documentation, Release 1.10.0

92 Chapter 21. Indices and tables

Python Module Index

d
django_ca.extensions, 53
django_ca.signals, 49
django_ca.subject, 59
django_ca.utils, 61

93

django-ca Documentation, Release 1.10.0

94 Python Module Index

Index

A
add_colons() (django_ca.extensions.Extension method),

52
add_colons() (in module django_ca.utils), 61
allows_intermediate_ca (django_ca.models.CertificateAuthority

attribute), 55
as_extension() (django_ca.extensions.Extension method),

52
as_text() (django_ca.extensions.Extension method), 52
authority_key_identifier (django_ca.models.X509CertMixin

attribute), 58
AuthorityKeyIdentifier (class in django_ca.extensions),

53

B
bundle (django_ca.models.Certificate attribute), 56
bundle (django_ca.models.CertificateAuthority attribute),

55

C
ca (django_ca.views.OCSPView attribute), 44
ca_crl (django_ca.views.CertificateRevocationListView

attribute), 40
ca_ocsp (django_ca.views.OCSPView attribute), 44
Certificate (class in django_ca.models), 56
CertificateAuthority (class in django_ca.models), 55
CertificateAuthorityManager (class in

django_ca.managers), 56
CertificateManager (class in django_ca.managers), 57
CertificateRevocationListView (class in

django_ca.views), 40
content_type (django_ca.views.CertificateRevocationListView

attribute), 40

D
digest (django_ca.views.CertificateRevocationListView

attribute), 40
django_ca.extensions (module), 53
django_ca.signals (module), 49

django_ca.subject (module), 59
django_ca.utils (module), 61

E
expires (django_ca.views.CertificateRevocationListView

attribute), 40
expires (django_ca.views.OCSPView attribute), 44
extended_key_usage (django_ca.models.X509CertMixin

attribute), 58
ExtendedKeyUsage (class in django_ca.extensions), 53
Extension (class in django_ca.extensions), 51
extension_type (django_ca.extensions.Extension at-

tribute), 52

F
fields (django_ca.subject.Subject attribute), 59
for_builder() (django_ca.extensions.Extension method),

52
format_general_name() (in module django_ca.utils), 61
format_general_names() (in module django_ca.utils), 61
format_name() (in module django_ca.utils), 62

G
GENERAL_NAME_RE (in module django_ca.utils), 61
get_cert_builder() (in module django_ca.utils), 62
get_cert_profile_kwargs() (in module django_ca.utils), 62
get_default_subject() (in module django_ca.utils), 62

I
init() (django_ca.managers.CertificateAuthorityManager

method), 56
init() (django_ca.managers.CertificateManager method),

57
int_to_hex() (in module django_ca.utils), 62
is_power2() (in module django_ca.utils), 62
issuer (django_ca.models.X509CertMixin attribute), 58

K
key_usage (django_ca.models.X509CertMixin attribute),

58

95

django-ca Documentation, Release 1.10.0

KeyIdExtension (class in django_ca.extensions), 52
KeyUsage (class in django_ca.extensions), 53
KNOWN_VALUES (django_ca.extensions.ExtendedKeyUsage

attribute), 53
KNOWN_VALUES (django_ca.extensions.KeyUsage at-

tribute), 53
KNOWN_VALUES (django_ca.extensions.TLSFeature

attribute), 53

L
LazyEncoder (class in django_ca.utils), 61

M
max_pathlen (django_ca.models.CertificateAuthority at-

tribute), 55
multiline_url_validator() (in module django_ca.utils), 62
MultiValueExtension (class in django_ca.extensions), 52

N
name (django_ca.extensions.Extension attribute), 52
name (django_ca.models.CertificateAuthority attribute),

55
name (django_ca.subject.Subject attribute), 59
NAME_RE (in module django_ca.utils), 61
not_after (django_ca.models.X509CertMixin attribute),

58
not_before (django_ca.models.X509CertMixin attribute),

58

O
OCSPView (class in django_ca.views), 44
OID_NAME_MAPPINGS (in module django_ca.utils),

61

P
parse_general_name() (in module django_ca.utils), 62
parse_hash_algorithm() (in module django_ca.utils), 64
parse_key_curve() (in module django_ca.utils), 64
parse_name() (in module django_ca.utils), 65
password (django_ca.views.CertificateRevocationListView

attribute), 40
pathlen (django_ca.models.CertificateAuthority at-

tribute), 55
post_create_ca (in module django_ca.signals), 49
post_issue_cert (in module django_ca.signals), 49
post_revoke_cert (in module django_ca.signals), 49
pre_create_ca (in module django_ca.signals), 49
pre_issue_cert (in module django_ca.signals), 49
pre_revoke_cert (in module django_ca.signals), 50

R
responder_cert (django_ca.views.OCSPView attribute),

44

responder_key (django_ca.views.OCSPView attribute),
44

S
sign_cert() (django_ca.managers.CertificateManager

method), 57
sort_name() (in module django_ca.utils), 65
Subject (class in django_ca.subject), 59
subject (django_ca.models.X509CertMixin attribute), 58
subject_key_identifier (django_ca.models.X509CertMixin

attribute), 58
SubjectKeyIdentifier (class in django_ca.extensions), 53

T
tls_feature (django_ca.models.X509CertMixin attribute),

58
TLSFeature (class in django_ca.extensions), 53
type (django_ca.views.CertificateRevocationListView at-

tribute), 40

V
validate_email() (in module django_ca.utils), 66

W
write_private_file() (in module django_ca.utils), 66

X
x509 (django_ca.models.X509CertMixin attribute), 58
x509_name() (in module django_ca.utils), 66
X509CertMixin (class in django_ca.models), 58

96 Index

	Installation
	Docker
	Update
	ChangeLog
	Custom settings
	Command-line interface
	Web interface
	Host a Certificate Revocation List (CRL)
	Run a OCSP responder
	Python API
	Signals
	django_ca.extensions - X509 extensions
	django_ca.models - django-ca models
	django_ca.subject - X509 Subject
	django_ca.utils - utility functions
	Development
	Contribute
	Release process
	x509 extensions in other CAs
	x509 extensions
	Indices and tables
	Python Module Index

